aboutsummaryrefslogtreecommitdiffhomepage
path: root/clib/cObj.ml
diff options
context:
space:
mode:
authorGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-15 18:51:45 +0100
committerGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-23 19:20:30 +0100
commit5ffa147bd2fe548df3ac9053fe497d0871a5f6df (patch)
treecc62882184c34e33e2995a5a4ff4ebfcbd0defe0 /clib/cObj.ml
parentdea75d74c222c25f6aa6c38506ac7a51b339e9c6 (diff)
[lib] Split auxiliary libraries into Coq-specific and general.
Up to this point the `lib` directory contained two different library archives, `clib.cma` and `lib.cma`, which a rough splitting between Coq-specific libraries and general-purpose ones. We know split the directory in two, as to make the distinction clear: - `clib`: contains libraries that are not Coq specific and implement common data structures and programming patterns. These libraries could be eventually replace with external dependencies and the rest of the code base wouldn't notice much. - `lib`: contains Coq-specific common libraries in widespread use along the codebase, but that are not considered part of other components. Examples are printing, error handling, or flags. In some cases we have coupling due to utility files depending on Coq specific flags, however this commit doesn't modify any files, but only moves them around, further cleanup is welcome, as indeed a few files in `lib` should likely be placed in `clib`. Also note that `Deque` is not used ATM.
Diffstat (limited to 'clib/cObj.ml')
-rw-r--r--clib/cObj.ml203
1 files changed, 203 insertions, 0 deletions
diff --git a/clib/cObj.ml b/clib/cObj.ml
new file mode 100644
index 000000000..7f3ee1855
--- /dev/null
+++ b/clib/cObj.ml
@@ -0,0 +1,203 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(*s Logical and physical size of ocaml values. *)
+
+(** {6 Logical sizes} *)
+
+let c = ref 0
+let s = ref 0
+let b = ref 0
+let m = ref 0
+
+let rec obj_stats d t =
+ if Obj.is_int t then m := max d !m
+ else if Obj.tag t >= Obj.no_scan_tag then
+ if Obj.tag t = Obj.string_tag then
+ (c := !c + Obj.size t; b := !b + 1; m := max d !m)
+ else if Obj.tag t = Obj.double_tag then
+ (s := !s + 2; b := !b + 1; m := max d !m)
+ else if Obj.tag t = Obj.double_array_tag then
+ (s := !s + 2 * Obj.size t; b := !b + 1; m := max d !m)
+ else (b := !b + 1; m := max d !m)
+ else
+ let n = Obj.size t in
+ s := !s + n; b := !b + 1;
+ block_stats (d + 1) (n - 1) t
+
+and block_stats d i t =
+ if i >= 0 then (obj_stats d (Obj.field t i); block_stats d (i-1) t)
+
+let obj_stats a =
+ c := 0; s:= 0; b:= 0; m:= 0;
+ obj_stats 0 (Obj.repr a);
+ (!c, !s + !b, !m)
+
+(** {6 Physical sizes} *)
+
+(*s Pointers already visited are stored in a hash-table, where
+ comparisons are done using physical equality. *)
+
+module H = Hashtbl.Make(
+ struct
+ type t = Obj.t
+ let equal = (==)
+ let hash = Hashtbl.hash
+ end)
+
+let node_table = (H.create 257 : unit H.t)
+
+let in_table o = try H.find node_table o; true with Not_found -> false
+
+let add_in_table o = H.add node_table o ()
+
+let reset_table () = H.clear node_table
+
+(*s Objects are traversed recursively, as soon as their tags are less than
+ [no_scan_tag]. [count] records the numbers of words already visited. *)
+
+let size_of_double = Obj.size (Obj.repr 1.0)
+
+let count = ref 0
+
+let rec traverse t =
+ if not (in_table t) && Obj.is_block t then begin
+ add_in_table t;
+ let n = Obj.size t in
+ let tag = Obj.tag t in
+ if tag < Obj.no_scan_tag then
+ begin
+ count := !count + 1 + n;
+ for i = 0 to n - 1 do traverse (Obj.field t i) done
+ end
+ else if tag = Obj.string_tag then
+ count := !count + 1 + n
+ else if tag = Obj.double_tag then
+ count := !count + size_of_double
+ else if tag = Obj.double_array_tag then
+ count := !count + 1 + size_of_double * n
+ else
+ incr count
+ end
+
+(*s Sizes of objects in words and in bytes. The size in bytes is computed
+ system-independently according to [Sys.word_size]. *)
+
+let size o =
+ reset_table ();
+ count := 0;
+ traverse (Obj.repr o);
+ !count
+
+let size_b o = (size o) * (Sys.word_size / 8)
+
+let size_kb o = (size o) / (8192 / Sys.word_size)
+
+(** {6 Physical sizes with sharing} *)
+
+(** This time, all the size of objects are computed with respect
+ to a larger object containing them all, and we only count
+ the new blocks not already seen earlier in the left-to-right
+ visit of the englobing object.
+
+ The very same object could have a zero size or not, depending
+ of the occurrence we're considering in the englobing object.
+ For speaking of occurrences, we use an [int list] for a path
+ of field indexes from the outmost block to the one we're looking.
+ In the list, the leftmost integer is the field index in the deepest
+ block.
+*)
+
+(** We now store in the hashtable the size (with sharing), and
+ also the position of the first occurrence of the object *)
+
+let node_sizes = (H.create 257 : (int*int list) H.t)
+let get_size o = H.find node_sizes o
+let add_size o n pos = H.replace node_sizes o (n,pos)
+let reset_sizes () = H.clear node_sizes
+let global_object = ref (Obj.repr 0)
+
+(** [sum n f] is [f 0 + f 1 + ... + f (n-1)], evaluated from left to right *)
+
+let sum n f =
+ let rec loop k acc = if k >= n then acc else loop (k+1) (acc + f k)
+ in loop 0 0
+
+(** Recursive visit of the main object, filling the hashtable *)
+
+let rec compute_size o pos =
+ if not (Obj.is_block o) then 0
+ else
+ try
+ let _ = get_size o in 0 (* already seen *)
+ with Not_found ->
+ let n = Obj.size o in
+ add_size o (-1) pos (* temp size, for cyclic values *);
+ let tag = Obj.tag o in
+ let size =
+ if tag < Obj.no_scan_tag then
+ 1 + n + sum n (fun i -> compute_size (Obj.field o i) (i::pos))
+ else if tag = Obj.string_tag then
+ 1 + n
+ else if tag = Obj.double_tag then
+ size_of_double
+ else if tag = Obj.double_array_tag then
+ size_of_double * n
+ else
+ 1
+ in
+ add_size o size pos;
+ size
+
+(** Provides the global object in which we'll search shared sizes *)
+
+let register_shared_size t =
+ let o = Obj.repr t in
+ reset_sizes ();
+ global_object := o;
+ ignore (compute_size o [])
+
+(** Shared size of an object with respect to the global object given
+ by the last [register_shared_size] *)
+
+let shared_size pos o =
+ if not (Obj.is_block o) then 0
+ else
+ let size,pos' =
+ try get_size o
+ with Not_found -> failwith "shared_size: unregistered structure ?"
+ in
+ match pos with
+ | Some p when p <> pos' -> 0
+ | _ -> size
+
+let shared_size_of_obj t = shared_size None (Obj.repr t)
+
+(** Shared size of the object at some positiion in the global object given
+ by the last [register_shared_size] *)
+
+let shared_size_of_pos pos =
+ let rec obj_of_pos o = function
+ | [] -> o
+ | n::pos' ->
+ let o' = obj_of_pos o pos' in
+ assert (Obj.is_block o' && n < Obj.size o');
+ Obj.field o' n
+ in
+ shared_size (Some pos) (obj_of_pos !global_object pos)
+
+
+(*s Total size of the allocated ocaml heap. *)
+
+let heap_size () =
+ let stat = Gc.stat ()
+ and control = Gc.get () in
+ let max_words_total = stat.Gc.heap_words + control.Gc.minor_heap_size in
+ (max_words_total * (Sys.word_size / 8))
+
+let heap_size_kb () = (heap_size () + 1023) / 1024