aboutsummaryrefslogtreecommitdiffhomepage
path: root/checker/declarations.mli
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2013-08-20 08:22:55 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2013-08-20 08:22:55 +0000
commitc5b699f8feb54b7ada2cb6c6754a1909ebedcd3f (patch)
tree7d8867a46ab2960d323e3307ee1c73ec32c58785 /checker/declarations.mli
parentec2948e7848265dbf547d97f0866ebd8f5cb6c97 (diff)
Declarations.mli: reorganization of modular structures
The earlier type [struct_expr_body] was far too broad, leading to code with unclear invariants, many "assert false", etc etc. Its replacement [module_alg_expr] has only three constructors: * MEident * MEapply : note the module_path as 2nd arg, no more constraints here * MEwith : no more constant_body inside, constr is just fine But no more SEBfunctor or SEBstruct constructor here (see below). This way, this datatype corresponds to algebraic expressions, i.e. anything that can appear in non-interactive modules. In fact, it even coincides now with [Entries.module_struct_entry]. - Functor constructors are now necessarily on top of other structures thanks to a generic [functorize] datatype. - Structures are now separated from algebraic expressions by design : the [mod_type] and [typ_expr] fields now only contain structures (or functorized structures), while [mod_type_alg] and [typ_expr_alg] are restricted to algebraic expressions only. - Only the implementation field [mod_expr] could be either algebraic or structural. We handle this via a specialized datatype [module_implementation] with four constructors: * Abstract : no implementation (cf. for instance Declare Module) * Algebraic(_) : for non-interactive modules, e.g. Module M := N. * Struct(_) : for interactive module, e.g. Module M : T. ... End M. * FullStruct : for interactive module with no type restriction. The [FullStruct] is a particular case of [Struct] where the implementation need not be stored at all, since it is exactly equal to its expanded type present in [mod_type]. This is less fragile than hoping as earlier that pointer equality between [mod_type] and [mod_expr] will be preserved... - We clearly emphasize that only [mod_type] and [typ_expr] are relevant for the kernel, while [mod_type_alg] and [typ_expr_alg] are there only for a nicer extraction and shorter module printing. [mod_expr] is also not accessed by the kernel, but it is important for Print Assumptions later. - A few implicit invariants remain, for instance "no MEwith in mod_expr", see the final comment in Declarations - Heavy refactoring of module-related files : modops, mod_typing, safe_typing, declaremods, extraction/extract_env.ml ... - Coqchk has been adapted accordingly. The code concerning MEwith in Mod_checking is now gone, since we cannot have any in mod_expr. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16712 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'checker/declarations.mli')
-rw-r--r--checker/declarations.mli4
1 files changed, 1 insertions, 3 deletions
diff --git a/checker/declarations.mli b/checker/declarations.mli
index 64234e8cd..ab74114d5 100644
--- a/checker/declarations.mli
+++ b/checker/declarations.mli
@@ -37,9 +37,7 @@ val mind_of_delta : delta_resolver -> mutual_inductive -> mutual_inductive
val subst_const_body : constant_body subst_fun
val subst_mind : mutual_inductive_body subst_fun
-val subst_modtype : substitution -> module_type_body -> module_type_body
-val subst_struct_expr : substitution -> struct_expr_body -> struct_expr_body
-val subst_structure : substitution -> structure_body -> structure_body
+val subst_signature : substitution -> module_signature -> module_signature
val subst_module : substitution -> module_body -> module_body
val join : substitution -> substitution -> substitution