diff options
author | Maxime Dénès <mail@maximedenes.fr> | 2015-01-12 14:32:23 +0100 |
---|---|---|
committer | Maxime Dénès <mail@maximedenes.fr> | 2015-01-12 14:32:23 +0100 |
commit | a7ed77403cd15ba1cc2c05f2b6193b46f0028eda (patch) | |
tree | 65777071ccf3ae6933767c84882b5e68b7f9992b | |
parent | d90a5d4bfb05cd832b439044542a8c22ad5bd3ee (diff) |
Fix files in test-suite having to do with Require inside modules.
-rw-r--r-- | test-suite/bugs/closed/335.v | 5 | ||||
-rw-r--r-- | test-suite/success/import_lib.v | 202 |
2 files changed, 0 insertions, 207 deletions
diff --git a/test-suite/bugs/closed/335.v b/test-suite/bugs/closed/335.v deleted file mode 100644 index 166fa7a9f..000000000 --- a/test-suite/bugs/closed/335.v +++ /dev/null @@ -1,5 +0,0 @@ -(* Compatibility of Require with backtracking at interactive module end *) - -Module A. -Require List. -End A. diff --git a/test-suite/success/import_lib.v b/test-suite/success/import_lib.v deleted file mode 100644 index fcedb2b1a..000000000 --- a/test-suite/success/import_lib.v +++ /dev/null @@ -1,202 +0,0 @@ -Definition le_trans := 0. - - -Module Test_Read. - Module M. - Require Le. (* Reading without importing *) - - Check Le.le_trans. - - Lemma th0 : le_trans = 0. - reflexivity. - Qed. - End M. - - Check Le.le_trans. - - Lemma th0 : le_trans = 0. - reflexivity. - Qed. - - Import M. - - Lemma th1 : le_trans = 0. - reflexivity. - Qed. -End Test_Read. - - -(****************************************************************) - -Definition le_decide := 1. (* from Arith/Compare *) -Definition min := 0. (* from Arith/Min *) - -Module Test_Require. - - Module M. - Require Import Compare. (* Imports Min as well *) - - Lemma th1 : le_decide = le_decide. - reflexivity. - Qed. - - Lemma th2 : min = min. - reflexivity. - Qed. - - End M. - - (* Checks that Compare and List are loaded *) - Check Compare.le_decide. - Check Min.min. - - - (* Checks that Compare and List are _not_ imported *) - Lemma th1 : le_decide = 1. - reflexivity. - Qed. - - Lemma th2 : min = 0. - reflexivity. - Qed. - - (* It should still be the case after Import M *) - Import M. - - Lemma th3 : le_decide = 1. - reflexivity. - Qed. - - Lemma th4 : min = 0. - reflexivity. - Qed. - -End Test_Require. - -(****************************************************************) - -Module Test_Import. - Module M. - Import Compare. (* Imports Min as well *) - - Lemma th1 : le_decide = le_decide. - reflexivity. - Qed. - - Lemma th2 : min = min. - reflexivity. - Qed. - - End M. - - (* Checks that Compare and List are loaded *) - Check Compare.le_decide. - Check Min.min. - - - (* Checks that Compare and List are _not_ imported *) - Lemma th1 : le_decide = 1. - reflexivity. - Qed. - - Lemma th2 : min = 0. - reflexivity. - Qed. - - (* It should still be the case after Import M *) - Import M. - - Lemma th3 : le_decide = 1. - reflexivity. - Qed. - - Lemma th4 : min = 0. - reflexivity. - Qed. -End Test_Import. - -(************************************************************************) - -Module Test_Export. - Module M. - Export Compare. (* Exports Min as well *) - - Lemma th1 : le_decide = le_decide. - reflexivity. - Qed. - - Lemma th2 : min = min. - reflexivity. - Qed. - - End M. - - - (* Checks that Compare and List are _not_ imported *) - Lemma th1 : le_decide = 1. - reflexivity. - Qed. - - Lemma th2 : min = 0. - reflexivity. - Qed. - - - (* After Import M they should be imported as well *) - - Import M. - - Lemma th3 : le_decide = le_decide. - reflexivity. - Qed. - - Lemma th4 : min = min. - reflexivity. - Qed. -End Test_Export. - - -(************************************************************************) - -Module Test_Require_Export. - - Definition mult_sym := 1. (* from Arith/Mult *) - Definition plus_sym := 0. (* from Arith/Plus *) - - Module M. - Require Export Mult. (* Exports Plus as well *) - - Lemma th1 : mult_comm = mult_comm. - reflexivity. - Qed. - - Lemma th2 : plus_comm = plus_comm. - reflexivity. - Qed. - - End M. - - - (* Checks that Mult and Plus are _not_ imported *) - Lemma th1 : mult_sym = 1. - reflexivity. - Qed. - - Lemma th2 : plus_sym = 0. - reflexivity. - Qed. - - - (* After Import M they should be imported as well *) - - Import M. - - Lemma th3 : mult_comm = mult_comm. - reflexivity. - Qed. - - Lemma th4 : plus_comm = plus_comm. - reflexivity. - Qed. - -End Test_Require_Export. |