aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Maxime Dénès <mail@maximedenes.fr>2015-01-12 14:32:23 +0100
committerGravatar Maxime Dénès <mail@maximedenes.fr>2015-01-12 14:32:23 +0100
commita7ed77403cd15ba1cc2c05f2b6193b46f0028eda (patch)
tree65777071ccf3ae6933767c84882b5e68b7f9992b
parentd90a5d4bfb05cd832b439044542a8c22ad5bd3ee (diff)
Fix files in test-suite having to do with Require inside modules.
-rw-r--r--test-suite/bugs/closed/335.v5
-rw-r--r--test-suite/success/import_lib.v202
2 files changed, 0 insertions, 207 deletions
diff --git a/test-suite/bugs/closed/335.v b/test-suite/bugs/closed/335.v
deleted file mode 100644
index 166fa7a9f..000000000
--- a/test-suite/bugs/closed/335.v
+++ /dev/null
@@ -1,5 +0,0 @@
-(* Compatibility of Require with backtracking at interactive module end *)
-
-Module A.
-Require List.
-End A.
diff --git a/test-suite/success/import_lib.v b/test-suite/success/import_lib.v
deleted file mode 100644
index fcedb2b1a..000000000
--- a/test-suite/success/import_lib.v
+++ /dev/null
@@ -1,202 +0,0 @@
-Definition le_trans := 0.
-
-
-Module Test_Read.
- Module M.
- Require Le. (* Reading without importing *)
-
- Check Le.le_trans.
-
- Lemma th0 : le_trans = 0.
- reflexivity.
- Qed.
- End M.
-
- Check Le.le_trans.
-
- Lemma th0 : le_trans = 0.
- reflexivity.
- Qed.
-
- Import M.
-
- Lemma th1 : le_trans = 0.
- reflexivity.
- Qed.
-End Test_Read.
-
-
-(****************************************************************)
-
-Definition le_decide := 1. (* from Arith/Compare *)
-Definition min := 0. (* from Arith/Min *)
-
-Module Test_Require.
-
- Module M.
- Require Import Compare. (* Imports Min as well *)
-
- Lemma th1 : le_decide = le_decide.
- reflexivity.
- Qed.
-
- Lemma th2 : min = min.
- reflexivity.
- Qed.
-
- End M.
-
- (* Checks that Compare and List are loaded *)
- Check Compare.le_decide.
- Check Min.min.
-
-
- (* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = 1.
- reflexivity.
- Qed.
-
- Lemma th2 : min = 0.
- reflexivity.
- Qed.
-
- (* It should still be the case after Import M *)
- Import M.
-
- Lemma th3 : le_decide = 1.
- reflexivity.
- Qed.
-
- Lemma th4 : min = 0.
- reflexivity.
- Qed.
-
-End Test_Require.
-
-(****************************************************************)
-
-Module Test_Import.
- Module M.
- Import Compare. (* Imports Min as well *)
-
- Lemma th1 : le_decide = le_decide.
- reflexivity.
- Qed.
-
- Lemma th2 : min = min.
- reflexivity.
- Qed.
-
- End M.
-
- (* Checks that Compare and List are loaded *)
- Check Compare.le_decide.
- Check Min.min.
-
-
- (* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = 1.
- reflexivity.
- Qed.
-
- Lemma th2 : min = 0.
- reflexivity.
- Qed.
-
- (* It should still be the case after Import M *)
- Import M.
-
- Lemma th3 : le_decide = 1.
- reflexivity.
- Qed.
-
- Lemma th4 : min = 0.
- reflexivity.
- Qed.
-End Test_Import.
-
-(************************************************************************)
-
-Module Test_Export.
- Module M.
- Export Compare. (* Exports Min as well *)
-
- Lemma th1 : le_decide = le_decide.
- reflexivity.
- Qed.
-
- Lemma th2 : min = min.
- reflexivity.
- Qed.
-
- End M.
-
-
- (* Checks that Compare and List are _not_ imported *)
- Lemma th1 : le_decide = 1.
- reflexivity.
- Qed.
-
- Lemma th2 : min = 0.
- reflexivity.
- Qed.
-
-
- (* After Import M they should be imported as well *)
-
- Import M.
-
- Lemma th3 : le_decide = le_decide.
- reflexivity.
- Qed.
-
- Lemma th4 : min = min.
- reflexivity.
- Qed.
-End Test_Export.
-
-
-(************************************************************************)
-
-Module Test_Require_Export.
-
- Definition mult_sym := 1. (* from Arith/Mult *)
- Definition plus_sym := 0. (* from Arith/Plus *)
-
- Module M.
- Require Export Mult. (* Exports Plus as well *)
-
- Lemma th1 : mult_comm = mult_comm.
- reflexivity.
- Qed.
-
- Lemma th2 : plus_comm = plus_comm.
- reflexivity.
- Qed.
-
- End M.
-
-
- (* Checks that Mult and Plus are _not_ imported *)
- Lemma th1 : mult_sym = 1.
- reflexivity.
- Qed.
-
- Lemma th2 : plus_sym = 0.
- reflexivity.
- Qed.
-
-
- (* After Import M they should be imported as well *)
-
- Import M.
-
- Lemma th3 : mult_comm = mult_comm.
- reflexivity.
- Qed.
-
- Lemma th4 : plus_comm = plus_comm.
- reflexivity.
- Qed.
-
-End Test_Require_Export.