diff options
author | Enrico Tassi <Enrico.Tassi@inria.fr> | 2018-04-12 10:08:05 +0200 |
---|---|---|
committer | Enrico Tassi <Enrico.Tassi@inria.fr> | 2018-05-15 09:58:47 +0200 |
commit | 15059d887c3059e6d925310be860dd2a3cf97796 (patch) | |
tree | e0c769cbad3b137e738c3e9da766f7f5f5795428 | |
parent | 3008ce85ed4de549816a1cac4701cb28bee4fad6 (diff) |
[ssr] import ssreflect test suite from math-comp
48 files changed, 3712 insertions, 2 deletions
diff --git a/test-suite/Makefile b/test-suite/Makefile index 9d84cd5c7..2531b8c67 100644 --- a/test-suite/Makefile +++ b/test-suite/Makefile @@ -94,7 +94,7 @@ INTERACTIVE := interactive VSUBSYSTEMS := prerequisite success failure $(BUGS) output \ output-modulo-time $(INTERACTIVE) micromega $(COMPLEXITY) modules stm \ - coqdoc + coqdoc ssr # All subsystems SUBSYSTEMS := $(VSUBSYSTEMS) misc bugs ide vio coqchk coqwc coq-makefile @@ -158,6 +158,7 @@ summary: $(call summary_dir, "Complexity tests", complexity); \ $(call summary_dir, "Module tests", modules); \ $(call summary_dir, "STM tests", stm); \ + $(call summary_dir, "SSR tests", ssr); \ $(call summary_dir, "IDE tests", ide); \ $(call summary_dir, "VI tests", vio); \ $(call summary_dir, "Coqchk tests", coqchk); \ @@ -261,7 +262,8 @@ $(addsuffix .log,$(wildcard prerequisite/*.v)): %.v.log: %.v fi; \ } > "$@" -$(addsuffix .log,$(wildcard success/*.v micromega/*.v modules/*.v)): %.v.log: %.v $(PREREQUISITELOG) +ssr: $(wildcard ssr/*.v:%.v=%.v.log) +$(addsuffix .log,$(wildcard ssr/*.v success/*.v micromega/*.v modules/*.v)): %.v.log: %.v $(PREREQUISITELOG) @echo "TEST $< $(call get_coq_prog_args_in_parens,"$<")" $(HIDE){ \ opts="$(if $(findstring modules/,$<),-R modules Mods -impredicative-set)"; \ diff --git a/test-suite/output/ssr_explain_match.out b/test-suite/output/ssr_explain_match.out new file mode 100644 index 000000000..fa2393b91 --- /dev/null +++ b/test-suite/output/ssr_explain_match.out @@ -0,0 +1,55 @@ +File "stdin", line 12, characters 0-61: +Warning: Notation _ - _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ <= _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ < _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ >= _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ > _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ <= _ <= _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ < _ <= _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ <= _ < _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ < _ < _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ + _ was already used in scope nat_scope. +[notation-overridden,parsing] +File "stdin", line 12, characters 0-61: +Warning: Notation _ * _ was already used in scope nat_scope. +[notation-overridden,parsing] +BEGIN INSTANCES +instance: (x + y + z) matches: (x + y + z) +instance: (x + y) matches: (x + y) +instance: (x + y) matches: (x + y) +END INSTANCES +BEGIN INSTANCES +instance: (addnC (x + y) z) matches: (x + y + z) +instance: (addnC x y) matches: (x + y) +instance: (addnC x y) matches: (x + y) +END INSTANCES +BEGIN INSTANCES +instance: (addnA x y z) matches: (x + y + z) +END INSTANCES +BEGIN INSTANCES +instance: (addnA x y z) matches: (x + y + z) +instance: (addnC z (x + y)) matches: (x + y + z) +instance: (addnC y x) matches: (x + y) +instance: (addnC y x) matches: (x + y) +END INSTANCES +The command has indeed failed with message: +Ltac call to "ssrinstancesoftpat (cpattern)" failed. +Not supported diff --git a/test-suite/output/ssr_explain_match.v b/test-suite/output/ssr_explain_match.v new file mode 100644 index 000000000..56ca24b6e --- /dev/null +++ b/test-suite/output/ssr_explain_match.v @@ -0,0 +1,23 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +Require Import ssrmatching. +Require Import ssreflect ssrbool TestSuite.ssr_mini_mathcomp. + +Definition addnAC := (addnA, addnC). + +Lemma test x y z : x + y + z = x + y. + +ssrinstancesoftpat (_ + _). +ssrinstancesofruleL2R addnC. +ssrinstancesofruleR2L addnA. +ssrinstancesofruleR2L addnAC. +Fail ssrinstancesoftpat (_ + _ in RHS). (* Not implemented *) +Admitted. diff --git a/test-suite/prerequisite/ssr_mini_mathcomp.v b/test-suite/prerequisite/ssr_mini_mathcomp.v new file mode 100644 index 000000000..cb2c56736 --- /dev/null +++ b/test-suite/prerequisite/ssr_mini_mathcomp.v @@ -0,0 +1,1472 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* Some code from mathcomp needed in order to run ssr_* tests *) + +Require Import ssreflect ssrfun ssrbool. + +Global Set SsrOldRewriteGoalsOrder. +Global Set Asymmetric Patterns. +Global Set Bullet Behavior "None". + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +(* eqtype ---------------------------------------------------------- *) + +Module Equality. + +Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y). + +Structure mixin_of T := Mixin {op : rel T; _ : axiom op}. +Notation class_of := mixin_of (only parsing). + +Section ClassDef. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). + +Definition class := let: Pack _ c _ := cT return class_of cT in c. + +Definition pack c := @Pack T c T. +Definition clone := fun c & cT -> T & phant_id (pack c) cT => pack c. + +End ClassDef. + +Module Exports. +Coercion sort : type >-> Sortclass. +Notation eqType := type. +Notation EqMixin := Mixin. +Notation EqType T m := (@pack T m). +Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T) + (at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope. +Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id) + (at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope. +Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id) + (at level 0, format "[ 'eqType' 'of' T ]") : form_scope. +End Exports. + +End Equality. +Export Equality.Exports. + +Definition eq_op T := Equality.op (Equality.class T). + +Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x. +Proof. by []. Qed. + +Lemma eqP T : Equality.axiom (@eq_op T). +Proof. by case: T => ? []. Qed. +Arguments eqP [T x y]. + +Delimit Scope eq_scope with EQ. +Open Scope eq_scope. + +Notation "x == y" := (eq_op x y) + (at level 70, no associativity) : bool_scope. +Notation "x == y :> T" := ((x : T) == (y : T)) + (at level 70, y at next level) : bool_scope. +Notation "x != y" := (~~ (x == y)) + (at level 70, no associativity) : bool_scope. +Notation "x != y :> T" := (~~ (x == y :> T)) + (at level 70, y at next level) : bool_scope. +Notation "x =P y" := (eqP : reflect (x = y) (x == y)) + (at level 70, no associativity) : eq_scope. +Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T)) + (at level 70, y at next level, no associativity) : eq_scope. + +Prenex Implicits eq_op eqP. + +Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed. +Notation eqxx := eq_refl. + +Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x). +Proof. exact/eqP/eqP. Qed. + +Hint Resolve eq_refl eq_sym. + + +Definition eqb b := addb (~~ b). + +Lemma eqbP : Equality.axiom eqb. +Proof. by do 2!case; constructor. Qed. + +Canonical bool_eqMixin := EqMixin eqbP. +Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin. + +Section ProdEqType. + +Variable T1 T2 : eqType. + +Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)]. + +Lemma pair_eqP : Equality.axiom pair_eq. +Proof. +move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=. +by do 2!move/eqP->. +Qed. + +Definition prod_eqMixin := EqMixin pair_eqP. +Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin. + +End ProdEqType. + +Section OptionEqType. + +Variable T : eqType. + +Definition opt_eq (u v : option T) : bool := + oapp (fun x => oapp (eq_op x) false v) (~~ v) u. + +Lemma opt_eqP : Equality.axiom opt_eq. +Proof. +case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->]. +Qed. + +Canonical option_eqMixin := EqMixin opt_eqP. +Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin. + +End OptionEqType. + +Notation xpred1 := (fun a1 x => x == a1). +Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x). + +Section EqPred. + +Variable T : eqType. + +Definition pred1 (a1 : T) := SimplPred (xpred1 a1). +Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p). + +End EqPred. + +Section TransferEqType. + +Variables (T : Type) (eT : eqType) (f : T -> eT). + +Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y). +Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; apply: f_inj. Qed. + +Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj). + +Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK). + +Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK). + +End TransferEqType. + +(* We use the module system to circumvent a silly limitation that *) +(* forbids using the same constant to coerce to different targets. *) +Module Type EqTypePredSig. +Parameter sort : eqType -> predArgType. +End EqTypePredSig. +Module MakeEqTypePred (eqmod : EqTypePredSig). +Coercion eqmod.sort : eqType >-> predArgType. +End MakeEqTypePred. +Module Export EqTypePred := MakeEqTypePred Equality. + + +Section SubType. + +Variables (T : Type) (P : pred T). + +Structure subType : Type := SubType { + sub_sort :> Type; + val : sub_sort -> T; + Sub : forall x, P x -> sub_sort; + _ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u; + _ : forall x Px, val (@Sub x Px) = x +}. + +Arguments Sub [s]. +Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed. +Definition vrefl_rect := vrefl. + +Definition clone_subType U v := + fun sT & sub_sort sT -> U => + fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'. + +Variable sT : subType. + +CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px). + +Lemma SubP u : Sub_spec u. +Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed. + +Lemma SubK x Px : @val sT (Sub x Px) = x. +Proof. by case: sT. Qed. + +Definition insub x := + if @idP (P x) is ReflectT Px then @Some sT (Sub x Px) else None. + +Definition insubd u0 x := odflt u0 (insub x). + +CoInductive insub_spec x : option sT -> Type := + | InsubSome u of P x & val u = x : insub_spec x (Some u) + | InsubNone of ~~ P x : insub_spec x None. + +Lemma insubP x : insub_spec x (insub x). +Proof. +by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; apply/negP]. +Qed. + +Lemma insubT x Px : insub x = Some (Sub x Px). +Admitted. + +Lemma insubF x : P x = false -> insub x = None. +Proof. by move/idP; case: insubP. Qed. + +Lemma insubN x : ~~ P x -> insub x = None. +Proof. by move/negPf/insubF. Qed. + +Lemma isSome_insub : ([eta insub] : pred T) =1 P. +Proof. by apply: fsym => x; case: insubP => // /negPf. Qed. + +Lemma insubK : ocancel insub (@val _). +Proof. by move=> x; case: insubP. Qed. + +Lemma valP (u : sT) : P (val u). +Proof. by case/SubP: u => x Px; rewrite SubK. Qed. + +Lemma valK : pcancel (@val _) insub. +Proof. by case/SubP=> x Px; rewrite SubK; apply: insubT. Qed. + +Lemma val_inj : injective (@val sT). +Proof. exact: pcan_inj valK. Qed. + +Lemma valKd u0 : cancel (@val _) (insubd u0). +Proof. by move=> u; rewrite /insubd valK. Qed. + +Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0. +Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed. + +Lemma insubdK u0 : {in P, cancel (insubd u0) (@val _)}. +Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed. + +Definition insub_eq x := + let Some_sub Px := Some (Sub x Px : sT) in + let None_sub _ := None in + (if P x as Px return P x = Px -> _ then Some_sub else None_sub) (erefl _). + +Lemma insub_eqE : insub_eq =1 insub. +Proof. +rewrite /insub_eq /insub => x; case: {2 3}_ / idP (erefl _) => // Px Px'. +by congr (Some _); apply: val_inj; rewrite !SubK. +Qed. + +End SubType. + +Arguments SubType [T P]. +Arguments Sub [T P s]. +Arguments vrefl [T P]. +Arguments vrefl_rect [T P]. +Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. +Arguments insub [T P sT]. +Arguments insubT [T] P [sT x]. +Arguments val_inj [T P sT]. +Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj. + +Local Notation inlined_sub_rect := + (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px). + +Local Notation inlined_new_rect := + (fun K K_S u => let (x) as u return K u := u in K_S x). + +Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect) + (at level 0, only parsing) : form_scope. + +Notation "[ 'sub' 'Type' 'for' v ]" := (SubType _ v _ _ vrefl_rect) + (at level 0, format "[ 'sub' 'Type' 'for' v ]") : form_scope. + +Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl) + (at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope. + +Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun) + (at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope. + +(* +Notation "[ 'subType' 'for' v ]" := (clone_subType _ v id idfun) + (at level 0, format "[ 'subType' 'for' v ]") : form_scope. +*) +Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id) + (at level 0, format "[ 'subType' 'of' U ]") : form_scope. + +Definition NewType T U v c Urec := + let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in + SubType U v (fun x _ => c x) Urec'. +Arguments NewType [T U]. + +Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect) + (at level 0, only parsing) : form_scope. + +Notation "[ 'new' 'Type' 'for' v ]" := (NewType v _ _ vrefl_rect) + (at level 0, format "[ 'new' 'Type' 'for' v ]") : form_scope. + +Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl) + (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope. + +Definition innew T nT x := @Sub T predT nT x (erefl true). +Arguments innew [T nT]. +Prenex Implicits innew. + +Lemma innew_val T nT : cancel val (@innew T nT). +Proof. by move=> u; apply: val_inj; apply: SubK. Qed. + +(* Prenex Implicits and renaming. *) +Notation sval := (@proj1_sig _ _). +Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'"). + +Section SubEqType. + +Variables (T : eqType) (P : pred T) (sT : subType P). + +Local Notation ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)). +Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed. + +Definition sub_eqMixin := EqMixin val_eqP. +Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin. + +Definition SubEqMixin := + (let: SubType _ v _ _ _ as sT' := sT + return ev_ax sT' val -> Equality.class_of sT' in + fun vP : ev_ax _ v => EqMixin vP + ) val_eqP. + +Lemma val_eqE (u v : sT) : (val u == val v) = (u == v). +Proof. by []. Qed. + +End SubEqType. + +Arguments val_eqP [T P sT x y]. +Prenex Implicits val_eqP. + +Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T) + (at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope. + +(* ssrnat ---------------------------------------------------------- *) + +Notation succn := Datatypes.S. +Notation predn := Peano.pred. + +Notation "n .+1" := (succn n) (at level 2, left associativity, + format "n .+1") : nat_scope. +Notation "n .+2" := n.+1.+1 (at level 2, left associativity, + format "n .+2") : nat_scope. +Notation "n .+3" := n.+2.+1 (at level 2, left associativity, + format "n .+3") : nat_scope. +Notation "n .+4" := n.+2.+2 (at level 2, left associativity, + format "n .+4") : nat_scope. + +Notation "n .-1" := (predn n) (at level 2, left associativity, + format "n .-1") : nat_scope. +Notation "n .-2" := n.-1.-1 (at level 2, left associativity, + format "n .-2") : nat_scope. + +Fixpoint eqn m n {struct m} := + match m, n with + | 0, 0 => true + | m'.+1, n'.+1 => eqn m' n' + | _, _ => false + end. + +Lemma eqnP : Equality.axiom eqn. +Proof. +move=> n m; apply: (iffP idP) => [|<-]; last by elim n. +by elim: n m => [|n IHn] [|m] //= /IHn->. +Qed. + +Canonical nat_eqMixin := EqMixin eqnP. +Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin. + +Arguments eqnP [x y]. +Prenex Implicits eqnP. + +Coercion nat_of_bool (b : bool) := if b then 1 else 0. + +Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false. + +Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed. + +Definition subn_rec := minus. +Notation "m - n" := (subn_rec m n) : nat_rec_scope. + +Definition subn := nosimpl subn_rec. +Notation "m - n" := (subn m n) : nat_scope. + +Definition leq m n := m - n == 0. + +Notation "m <= n" := (leq m n) : nat_scope. +Notation "m < n" := (m.+1 <= n) : nat_scope. +Notation "m >= n" := (n <= m) (only parsing) : nat_scope. +Notation "m > n" := (n < m) (only parsing) : nat_scope. + + +Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope. +Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope. +Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope. +Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope. + +Open Scope nat_scope. + + +Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed. +Lemma leq0n n : 0 <= n. Proof. by []. Qed. +Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed. +Lemma ltn0 n : n < 0 = false. Proof. by []. Qed. +Lemma leqnn n : n <= n. Proof. by elim: n. Qed. +Hint Resolve leqnn. +Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed. + +Lemma leq_trans n m p : m <= n -> n <= p -> m <= p. +Admitted. +Lemma leqW m n : m <= n -> m <= n.+1. +Admitted. +Hint Resolve leqnSn. +Lemma ltnW m n : m < n -> m <= n. +Proof. exact: leq_trans. Qed. +Hint Resolve ltnW. + +Definition addn_rec := plus. +Notation "m + n" := (addn_rec m n) : nat_rec_scope. + +Definition addn := nosimpl addn_rec. +Notation "m + n" := (addn m n) : nat_scope. + +Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed. +Lemma add0n : left_id 0 addn. Proof. by []. Qed. +Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed. +Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by elim: m. Qed. + +Lemma addnCA : left_commutative addn. +Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed. + +Lemma addnC : commutative addn. +Proof. by move=> m n; rewrite -{1}[n]addn0 addnCA addn0. Qed. + +Lemma addnA : associative addn. +Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed. + +Lemma subnK m n : m <= n -> (n - m) + m = n. +Admitted. + + +Definition muln_rec := mult. +Notation "m * n" := (muln_rec m n) : nat_rec_scope. + +Definition muln := nosimpl muln_rec. +Notation "m * n" := (muln m n) : nat_scope. + +Lemma mul0n : left_zero 0 muln. Proof. by []. Qed. +Lemma muln0 : right_zero 0 muln. Proof. by elim. Qed. +Lemma mul1n : left_id 1 muln. Proof. exact: addn0. Qed. + +Lemma mulSn m n : m.+1 * n = n + m * n. Proof. by []. Qed. +Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed. + +Lemma mulnS m n : m * n.+1 = m + m * n. +Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed. + +Lemma mulnSr m n : m * n.+1 = m * n + m. +Proof. by rewrite addnC mulnS. Qed. + +Lemma muln1 : right_id 1 muln. +Proof. by move=> n; rewrite mulnSr muln0. Qed. + +Lemma mulnC : commutative muln. +Proof. +by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->. +Qed. + +Lemma mulnDl : left_distributive muln addn. +Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed. + +Lemma mulnDr : right_distributive muln addn. +Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed. + +Lemma mulnA : associative muln. +Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed. + +Lemma mulnCA : left_commutative muln. +Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed. + +Lemma mulnAC : right_commutative muln. +Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed. + +Lemma mulnACA : interchange muln muln. +Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed. + +(* seq ------------------------------------------------------------- *) + +Delimit Scope seq_scope with SEQ. +Open Scope seq_scope. + +(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *) +Notation seq := list. +Prenex Implicits cons. +Notation Cons T := (@cons T) (only parsing). +Notation Nil T := (@nil T) (only parsing). + +Bind Scope seq_scope with list. +Arguments cons _%type _ _%SEQ. + +(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *) +(* them here. *) +Infix "::" := cons : seq_scope. + +(* GG - this triggers a camlp4 warning, as if this Notation had been Reserved *) +Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope. + +Notation "[ :: x1 ]" := (x1 :: [::]) + (at level 0, format "[ :: x1 ]") : seq_scope. + +Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope. + +Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..) + (at level 0, format + "'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'" + ) : seq_scope. + +Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..) + (at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]" + ) : seq_scope. + +Section Sequences. + +Variable n0 : nat. (* numerical parameter for take, drop et al *) +Variable T : Type. (* must come before the implicit Type *) +Variable x0 : T. (* default for head/nth *) + +Implicit Types x y z : T. +Implicit Types m n : nat. +Implicit Type s : seq T. + +Fixpoint size s := if s is _ :: s' then (size s').+1 else 0. + +Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2 +where "s1 ++ s2" := (cat s1 s2) : seq_scope. + +Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed. + +Lemma cats0 s : s ++ [::] = s. +Proof. by elim: s => //= x s ->. Qed. + +Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3. +Proof. by elim: s1 => //= x s1 ->. Qed. + +Fixpoint nth s n {struct n} := + if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0. + +Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z]. + +CoInductive last_spec : seq T -> Type := + | LastNil : last_spec [::] + | LastRcons s x : last_spec (rcons s x). + +Lemma lastP s : last_spec s. +Proof using. Admitted. + +Lemma last_ind P : + P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s. +Proof using. Admitted. + + +Section Map. + +Variables (T2 : Type) (f : T -> T2). + +Fixpoint map s := if s is x :: s' then f x :: map s' else [::]. + +End Map. + +Section SeqFind. + +Variable a : pred T. + +Fixpoint count s := if s is x :: s' then a x + count s' else 0. + +Fixpoint filter s := + if s is x :: s' then if a x then x :: filter s' else filter s' else [::]. + +End SeqFind. + +End Sequences. + +Infix "++" := cat : seq_scope. + +Notation count_mem x := (count (pred_of_simpl (pred1 x))). + +Section EqSeq. + +Variables (n0 : nat) (T : eqType) (x0 : T). +Local Notation nth := (nth x0). +Implicit Type s : seq T. +Implicit Types x y z : T. + +Fixpoint eqseq s1 s2 {struct s2} := + match s1, s2 with + | [::], [::] => true + | x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2' + | _, _ => false + end. + +Lemma eqseqP : Equality.axiom eqseq. +Proof. +move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl]. +case: (x1 =P x2) => [<-|neqx]; last by right; case. +by apply: (iffP (IHs s2)) => [<-|[]]. +Qed. + +Canonical seq_eqMixin := EqMixin eqseqP. +Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin. + +Fixpoint mem_seq (s : seq T) := + if s is y :: s' then xpredU1 y (mem_seq s') else xpred0. + +Definition eqseq_class := seq T. +Identity Coercion seq_of_eqseq : eqseq_class >-> seq. +Coercion pred_of_eq_seq (s : eqseq_class) : pred_class := [eta mem_seq s]. + +Canonical seq_predType := @mkPredType T (seq T) pred_of_eq_seq. + +Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true. + +End EqSeq. + +Definition bitseq := seq bool. +Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. +Canonical bitseq_predType := Eval hnf in [predType of bitseq]. + +Section Pmap. + +Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT). + +Fixpoint pmap s := + if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::]. + +End Pmap. + +Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::]. + +Section FoldRight. + +Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R). + +Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0. + +End FoldRight. + +Lemma mem_iota m n i : (i \in iota m n) = (m <= i) && (i < m + n). +Admitted. + + +(* choice ------------------------------------------------------------- *) + +Module Choice. + +Section ClassDef. + +Record mixin_of T := Mixin { + find : pred T -> nat -> option T; + _ : forall P n x, find P n = Some x -> P x; + _ : forall P : pred T, (exists x, P x) -> exists n, find P n; + _ : forall P Q : pred T, P =1 Q -> find P =1 find Q +}. + +Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}. +Local Coercion base : class_of >-> Equality.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack m := + fun b bT & phant_id (Equality.class bT) b => Pack (@Class T b m) T. + +(* Inheritance *) +Definition eqType := @Equality.Pack cT xclass xT. + +End ClassDef. + +Module Import Exports. +Coercion base : class_of >-> Equality.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Notation choiceType := type. +Notation choiceMixin := mixin_of. +Notation ChoiceType T m := (@pack T m _ _ id). +Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'choiceType' 'of' T ]") : form_scope. + +End Exports. + +End Choice. +Export Choice.Exports. + +Section ChoiceTheory. + +Variable T : choiceType. + +Section CanChoice. + +Variables (sT : Type) (f : sT -> T). + +Lemma PcanChoiceMixin f' : pcancel f f' -> choiceMixin sT. +Admitted. + +Definition CanChoiceMixin f' (fK : cancel f f') := + PcanChoiceMixin (can_pcan fK). + +End CanChoice. + +Section SubChoice. + +Variables (P : pred T) (sT : subType P). + +Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT). +Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin. +Canonical sub_choiceType := Choice.Pack sub_choiceClass sT. + +End SubChoice. + + +Fact seq_choiceMixin : choiceMixin (seq T). +Admitted. +Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin. +End ChoiceTheory. + +Fact nat_choiceMixin : choiceMixin nat. +Proof. +pose f := [fun (P : pred nat) n => if P n then Some n else None]. +exists f => [P n m | P [n Pn] | P Q eqPQ n] /=; last by rewrite eqPQ. + by case: ifP => // Pn [<-]. +by exists n; rewrite Pn. +Qed. +Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin. + +Definition bool_choiceMixin := CanChoiceMixin oddb. +Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin. +Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq]. + + +Notation "[ 'choiceMixin' 'of' T 'by' <: ]" := + (sub_choiceMixin _ : choiceMixin T) + (at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope. + + + + +Module Countable. + +Record mixin_of (T : Type) : Type := Mixin { + pickle : T -> nat; + unpickle : nat -> option T; + pickleK : pcancel pickle unpickle +}. + +Definition EqMixin T m := PcanEqMixin (@pickleK T m). +Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m). + +Section ClassDef. + +Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }. +Local Coercion base : class_of >-> Choice.class_of. + +Structure type : Type := Pack {sort : Type; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack m := + fun bT b & phant_id (Choice.class bT) b => Pack (@Class T b m) T. + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> Choice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Notation countType := type. +Notation CountType T m := (@pack T m _ _ id). +Notation CountMixin := Mixin. +Notation CountChoiceMixin := ChoiceMixin. +Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'countType' 'of' T ]") : form_scope. + +End Exports. + +End Countable. +Export Countable.Exports. + +Definition unpickle T := Countable.unpickle (Countable.class T). +Definition pickle T := Countable.pickle (Countable.class T). +Arguments unpickle [T]. +Prenex Implicits pickle unpickle. + +Section CountableTheory. + +Variable T : countType. + +Lemma pickleK : @pcancel nat T pickle unpickle. +Proof. exact: Countable.pickleK. Qed. + +Definition pickle_inv n := + obind (fun x : T => if pickle x == n then Some x else None) (unpickle n). + +Lemma pickle_invK : ocancel pickle_inv pickle. +Proof. +by rewrite /pickle_inv => n; case def_x: (unpickle n) => //= [x]; case: eqP. +Qed. + +Lemma pickleK_inv : pcancel pickle pickle_inv. +Proof. by rewrite /pickle_inv => x; rewrite pickleK /= eqxx. Qed. + +Lemma pcan_pickleK sT f f' : + @pcancel T sT f f' -> pcancel (pickle \o f) (pcomp f' unpickle). +Proof. by move=> fK x; rewrite /pcomp pickleK /= fK. Qed. + +Definition PcanCountMixin sT f f' (fK : pcancel f f') := + @CountMixin sT _ _ (pcan_pickleK fK). + +Definition CanCountMixin sT f f' (fK : cancel f f') := + @PcanCountMixin sT _ _ (can_pcan fK). + +Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT). + +End CountableTheory. +Notation "[ 'countMixin' 'of' T 'by' <: ]" := + (sub_countMixin _ : Countable.mixin_of T) + (at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope. + +Section SubCountType. + +Variables (T : choiceType) (P : pred T). +Import Countable. + +Structure subCountType : Type := + SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}. + +Coercion sub_countType (sT : subCountType) := + Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id. +Canonical sub_countType. + +Definition pack_subCountType U := + fun sT cT & sub_sort sT * sort cT -> U * U => + fun b m & phant_id (Class b m) (class cT) => @SubCountType sT m. + +End SubCountType. + +(* This assumes that T has both countType and subType structures. *) +Notation "[ 'subCountType' 'of' T ]" := + (@pack_subCountType _ _ T _ _ id _ _ id) + (at level 0, format "[ 'subCountType' 'of' T ]") : form_scope. + +Lemma nat_pickleK : pcancel id (@Some nat). Proof. by []. Qed. +Definition nat_countMixin := CountMixin nat_pickleK. +Canonical nat_countType := Eval hnf in CountType nat nat_countMixin. + +(* fintype --------------------------------------------------------- *) + +Module Finite. + +Section RawMixin. + +Variable T : eqType. + +Definition axiom e := forall x : T, count_mem x e = 1. + +Lemma uniq_enumP e : uniq e -> e =i T -> axiom e. +Admitted. + +Record mixin_of := Mixin { + mixin_base : Countable.mixin_of T; + mixin_enum : seq T; + _ : axiom mixin_enum +}. + +End RawMixin. + +Section Mixins. + +Variable T : countType. + +Definition EnumMixin := + let: Countable.Pack _ (Countable.Class _ m) _ as cT := T + return forall e : seq cT, axiom e -> mixin_of cT in + @Mixin (EqType _ _) m. + +Definition UniqMixin e Ue eT := @EnumMixin e (uniq_enumP Ue eT). + +Variable n : nat. + +End Mixins. + +Section ClassDef. + +Record class_of T := Class { + base : Choice.class_of T; + mixin : mixin_of (Equality.Pack base T) +}. +Definition base2 T c := Countable.Class (@base T c) (mixin_base (mixin c)). +Local Coercion base : class_of >-> Choice.class_of. + +Structure type : Type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack b0 (m0 : mixin_of (EqType T b0)) := + fun bT b & phant_id (Choice.class bT) b => + fun m & phant_id m0 m => Pack (@Class T b m) T. + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (base2 xclass) xT. + +End ClassDef. + +Module Import Exports. +Coercion mixin_base : mixin_of >-> Countable.mixin_of. +Coercion base : class_of >-> Choice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion base2 : class_of >-> Countable.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Notation finType := type. +Notation FinType T m := (@pack T _ m _ _ id _ id). +Notation FinMixin := EnumMixin. +Notation UniqFinMixin := UniqMixin. +Notation "[ 'finType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'finType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'finType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'finType' 'of' T ]") : form_scope. +End Exports. + +Module Type EnumSig. +Parameter enum : forall cT : type, seq cT. +Axiom enumDef : enum = fun cT => mixin_enum (class cT). +End EnumSig. + +Module EnumDef : EnumSig. +Definition enum cT := mixin_enum (class cT). +Definition enumDef := erefl enum. +End EnumDef. + +Notation enum := EnumDef.enum. + +End Finite. +Export Finite.Exports. + +Section SubFinType. + +Variables (T : choiceType) (P : pred T). +Import Finite. + +Structure subFinType := SubFinType { + subFin_sort :> subType P; + _ : mixin_of (sub_eqType subFin_sort) +}. + +Definition pack_subFinType U := + fun cT b m & phant_id (class cT) (@Class U b m) => + fun sT m' & phant_id m' m => @SubFinType sT m'. + +Implicit Type sT : subFinType. + +Definition subFin_mixin sT := + let: SubFinType _ m := sT return mixin_of (sub_eqType sT) in m. + +Coercion subFinType_subCountType sT := @SubCountType _ _ sT (subFin_mixin sT). +Canonical subFinType_subCountType. + +Coercion subFinType_finType sT := + Pack (@Class sT (sub_choiceClass sT) (subFin_mixin sT)) sT. +Canonical subFinType_finType. + +Definition enum_mem T (mA : mem_pred _) := filter mA (Finite.enum T). +Definition image_mem T T' f mA : seq T' := map f (@enum_mem T mA). +Definition codom T T' f := @image_mem T T' f (mem T). + +Lemma codom_val sT x : (x \in codom (val : sT -> T)) = P x. +Admitted. + +End SubFinType. + + +(* This assumes that T has both finType and subCountType structures. *) +Notation "[ 'subFinType' 'of' T ]" := (@pack_subFinType _ _ T _ _ _ id _ _ id) + (at level 0, format "[ 'subFinType' 'of' T ]") : form_scope. + + + +Section OrdinalSub. + +Variable n : nat. + +Inductive ordinal : predArgType := Ordinal m of m < n. + +Coercion nat_of_ord i := let: Ordinal m _ := i in m. + +Canonical ordinal_subType := [subType for nat_of_ord]. +Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:]. +Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin. +Definition ordinal_choiceMixin := [choiceMixin of ordinal by <:]. +Canonical ordinal_choiceType := + Eval hnf in ChoiceType ordinal ordinal_choiceMixin. +Definition ordinal_countMixin := [countMixin of ordinal by <:]. +Canonical ordinal_countType := Eval hnf in CountType ordinal ordinal_countMixin. +Canonical ordinal_subCountType := [subCountType of ordinal]. + +Lemma ltn_ord (i : ordinal) : i < n. Proof. exact: valP i. Qed. + +Lemma ord_inj : injective nat_of_ord. Proof. exact: val_inj. Qed. + +Definition ord_enum : seq ordinal := pmap insub (iota 0 n). + +Lemma val_ord_enum : map val ord_enum = iota 0 n. +Admitted. + +Lemma ord_enum_uniq : uniq ord_enum. +Admitted. + +Lemma mem_ord_enum i : i \in ord_enum. +Admitted. + +Definition ordinal_finMixin := + Eval hnf in UniqFinMixin ord_enum_uniq mem_ord_enum. +Canonical ordinal_finType := Eval hnf in FinType ordinal ordinal_finMixin. +Canonical ordinal_subFinType := Eval hnf in [subFinType of ordinal]. + +End OrdinalSub. + +Notation "''I_' n" := (ordinal n) + (at level 8, n at level 2, format "''I_' n"). + +(* bigop ----------------------------------------------------------------- *) + +Reserved Notation "\big [ op / idx ]_ i F" + (at level 36, F at level 36, op, idx at level 10, i at level 0, + right associativity, + format "'[' \big [ op / idx ]_ i '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, r at level 50, + format "'[' \big [ op / idx ]_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i <- r ) F" + (at level 36, F at level 36, op, idx at level 10, i, r at level 50, + format "'[' \big [ op / idx ]_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" + (at level 36, F at level 36, op, idx at level 10, m, i, n at level 50, + format "'[' \big [ op / idx ]_ ( m <= i < n | P ) F ']'"). +Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F" + (at level 36, F at level 36, op, idx at level 10, i, m, n at level 50, + format "'[' \big [ op / idx ]_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i | P ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i : t | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i : t ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i : t ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, n at level 50, + format "'[' \big [ op / idx ]_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i < n ) F" + (at level 36, F at level 36, op, idx at level 10, i, n at level 50, + format "'[' \big [ op / idx ]_ ( i < n ) F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, A at level 50, + format "'[' \big [ op / idx ]_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F" + (at level 36, F at level 36, op, idx at level 10, i, A at level 50, + format "'[' \big [ op / idx ]_ ( i 'in' A ) '/ ' F ']'"). + +Module Monoid. + +Section Definitions. +Variables (T : Type) (idm : T). + +Structure law := Law { + operator : T -> T -> T; + _ : associative operator; + _ : left_id idm operator; + _ : right_id idm operator +}. +Local Coercion operator : law >-> Funclass. + +Structure com_law := ComLaw { + com_operator : law; + _ : commutative com_operator +}. +Local Coercion com_operator : com_law >-> law. + +Structure mul_law := MulLaw { + mul_operator : T -> T -> T; + _ : left_zero idm mul_operator; + _ : right_zero idm mul_operator +}. +Local Coercion mul_operator : mul_law >-> Funclass. + +Structure add_law (mul : T -> T -> T) := AddLaw { + add_operator : com_law; + _ : left_distributive mul add_operator; + _ : right_distributive mul add_operator +}. +Local Coercion add_operator : add_law >-> com_law. + +Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2. + +Definition clone_law op := + fun (opL : law) & op_id opL op => + fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1) + & phant_id opL' opL => opL'. + +Definition clone_com_law op := + fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op => + fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'. + +Definition clone_mul_law op := + fun (opM : mul_law) & op_id opM op => + fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'. + +Definition clone_add_law mop aop := + fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop => + fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD) + & phant_id opA' opA => opA'. + +End Definitions. + +Module Import Exports. +Coercion operator : law >-> Funclass. +Coercion com_operator : com_law >-> law. +Coercion mul_operator : mul_law >-> Funclass. +Coercion add_operator : add_law >-> com_law. +Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id) + (at level 0, format"[ 'law' 'of' f ]") : form_scope. +Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id) + (at level 0, format "[ 'com_law' 'of' f ]") : form_scope. +Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id) + (at level 0, format"[ 'mul_law' 'of' f ]") : form_scope. +Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id) + (at level 0, format "[ 'add_law' m 'of' a ]") : form_scope. +End Exports. + +Section CommutativeAxioms. + +Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T). +Hypothesis mulC : commutative mul. + +Lemma mulC_id : left_id one mul -> right_id one mul. +Proof. by move=> mul1x x; rewrite mulC. Qed. + +Lemma mulC_zero : left_zero zero mul -> right_zero zero mul. +Proof. by move=> mul0x x; rewrite mulC. Qed. + +Lemma mulC_dist : left_distributive mul add -> right_distributive mul add. +Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed. + +End CommutativeAxioms. +Module Theory. + +Section Theory. +Variables (T : Type) (idm : T). + +Section Plain. +Variable mul : law idm. +Lemma mul1m : left_id idm mul. Proof. by case mul. Qed. +Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed. +Lemma mulmA : associative mul. Proof. by case mul. Qed. +(*Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.*) + +End Plain. + +Section Commutative. +Variable mul : com_law idm. +Lemma mulmC : commutative mul. Proof. by case mul. Qed. +Lemma mulmCA : left_commutative mul. +Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed. +Lemma mulmAC : right_commutative mul. +Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed. +Lemma mulmACA : interchange mul mul. +Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed. +End Commutative. + +Section Mul. +Variable mul : mul_law idm. +Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed. +Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed. +End Mul. + +Section Add. +Variables (mul : T -> T -> T) (add : add_law idm mul). +Lemma addmA : associative add. Proof. exact: mulmA. Qed. +Lemma addmC : commutative add. Proof. exact: mulmC. Qed. +Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed. +Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed. +Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed. +Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed. +Lemma mulm_addl : left_distributive mul add. Proof. by case add. Qed. +Lemma mulm_addr : right_distributive mul add. Proof. by case add. Qed. +End Add. + +Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA). + +End Theory. + +End Theory. +Include Theory. + +End Monoid. +Export Monoid.Exports. + +Section PervasiveMonoids. + +Import Monoid. + +Canonical andb_monoid := Law andbA andTb andbT. +Canonical andb_comoid := ComLaw andbC. + +Canonical andb_muloid := MulLaw andFb andbF. +Canonical orb_monoid := Law orbA orFb orbF. +Canonical orb_comoid := ComLaw orbC. +Canonical orb_muloid := MulLaw orTb orbT. +Canonical addb_monoid := Law addbA addFb addbF. +Canonical addb_comoid := ComLaw addbC. +Canonical orb_addoid := AddLaw andb_orl andb_orr. +Canonical andb_addoid := AddLaw orb_andl orb_andr. +Canonical addb_addoid := AddLaw andb_addl andb_addr. + +Canonical addn_monoid := Law addnA add0n addn0. +Canonical addn_comoid := ComLaw addnC. +Canonical muln_monoid := Law mulnA mul1n muln1. +Canonical muln_comoid := ComLaw mulnC. +Canonical muln_muloid := MulLaw mul0n muln0. +Canonical addn_addoid := AddLaw mulnDl mulnDr. + +Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T). + +End PervasiveMonoids. +Delimit Scope big_scope with BIG. +Open Scope big_scope. + +(* The bigbody wrapper is a workaround for a quirk of the Coq pretty-printer, *) +(* which would fail to redisplay the \big notation when the <general_term> or *) +(* <condition> do not depend on the bound index. The BigBody constructor *) +(* packages both in in a term in which i occurs; it also depends on the *) +(* iterated <op>, as this can give more information on the expected type of *) +(* the <general_term>, thus allowing for the insertion of coercions. *) +CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R. + +Definition applybig {R I} (body : bigbody R I) x := + let: BigBody _ op b v := body in if b then op v x else x. + +Definition reducebig R I idx r (body : I -> bigbody R I) := + foldr (applybig \o body) idx r. + +Module Type BigOpSig. +Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R. +Axiom bigopE : bigop = reducebig. +End BigOpSig. + +Module BigOp : BigOpSig. +Definition bigop := reducebig. +Lemma bigopE : bigop = reducebig. Proof. by []. Qed. +End BigOp. + +Notation bigop := BigOp.bigop (only parsing). +Canonical bigop_unlock := Unlockable BigOp.bigopE. + +Definition index_iota m n := iota m (n - m). + +Definition index_enum (T : finType) := Finite.enum T. + +Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n). +Admitted. + +Lemma mem_index_enum T i : i \in index_enum T. +Admitted. + +Hint Resolve mem_index_enum. + +(* +Lemma filter_index_enum T P : filter P (index_enum T) = enum P. +Proof. by []. Qed. +*) + +Notation "\big [ op / idx ]_ ( i <- r | P ) F" := + (bigop idx r (fun i => BigBody i op P%B F)) : big_scope. +Notation "\big [ op / idx ]_ ( i <- r ) F" := + (bigop idx r (fun i => BigBody i op true F)) : big_scope. +Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" := + (bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F)) + : big_scope. +Notation "\big [ op / idx ]_ ( m <= i < n ) F" := + (bigop idx (index_iota m n) (fun i : nat => BigBody i op true F)) + : big_scope. +Notation "\big [ op / idx ]_ ( i | P ) F" := + (bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope. +Notation "\big [ op / idx ]_ i F" := + (bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope. +Notation "\big [ op / idx ]_ ( i : t | P ) F" := + (bigop idx (index_enum _) (fun i : t => BigBody i op P%B F)) + (only parsing) : big_scope. +Notation "\big [ op / idx ]_ ( i : t ) F" := + (bigop idx (index_enum _) (fun i : t => BigBody i op true F)) + (only parsing) : big_scope. +Notation "\big [ op / idx ]_ ( i < n | P ) F" := + (\big[op/idx]_(i : ordinal n | P%B) F) : big_scope. +Notation "\big [ op / idx ]_ ( i < n ) F" := + (\big[op/idx]_(i : ordinal n) F) : big_scope. +Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" := + (\big[op/idx]_(i | (i \in A) && P) F) : big_scope. +Notation "\big [ op / idx ]_ ( i 'in' A ) F" := + (\big[op/idx]_(i | i \in A) F) : big_scope. + +Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern. +Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern. + +(* Induction loading *) +Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F : + K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i) + -> K' (\big[op/idx]_(i <- r | P i) F i). +Proof. by case. Qed. + +Arguments big_load [R] K [K'] idx op [I]. + +Section Elim3. + +Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type). +Variables (id1 : R1) (op1 : R1 -> R1 -> R1). +Variables (id2 : R2) (op2 : R2 -> R2 -> R2). +Variables (id3 : R3) (op3 : R3 -> R3 -> R3). + +Hypothesis Kid : K id1 id2 id3. + +Lemma big_rec3 I r (P : pred I) F1 F2 F3 + (K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 -> + K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) + (\big[op2/id2]_(i <- r | P i) F2 i) + (\big[op3/id3]_(i <- r | P i) F3 i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed. + +Hypothesis Kop : forall x1 x2 x3 y1 y2 y3, + K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3). +Lemma big_ind3 I r (P : pred I) F1 F2 F3 + (K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) + (\big[op2/id2]_(i <- r | P i) F2 i) + (\big[op3/id3]_(i <- r | P i) F3 i). +Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed. + +End Elim3. + +Arguments big_rec3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ [I r P F1 F2 F3]. +Arguments big_ind3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ _ [I r P F1 F2 F3]. + +Section Elim2. + +Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1). +Variables (id1 : R1) (op1 : R1 -> R1 -> R1). +Variables (id2 : R2) (op2 : R2 -> R2 -> R2). + +Hypothesis Kid : K id1 id2. + +Lemma big_rec2 I r (P : pred I) F1 F2 + (K_F : forall i y1 y2, P i -> K y1 y2 -> + K (op1 (F1 i) y1) (op2 (F2 i) y2)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed. + +Hypothesis Kop : forall x1 x2 y1 y2, + K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2). +Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i). +Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed. + +Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1). +Lemma big_morph I r (P : pred I) F : + f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i). +Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed. + +End Elim2. + +Arguments big_rec2 [R1 R2] K [id1 op1 id2 op2] _ [I r P F1 F2]. +Arguments big_ind2 [R1 R2] K [id1 op1 id2 op2] _ _ [I r P F1 F2]. +Arguments big_morph [R1 R2] f [id1 op1 id2 op2] _ _ [I]. + +Section Elim1. + +Variables (R : Type) (K : R -> Type) (f : R -> R). +Variables (idx : R) (op op' : R -> R -> R). + +Hypothesis Kid : K idx. + +Lemma big_rec I r (P : pred I) F + (Kop : forall i x, P i -> K x -> K (op (F i) x)) : + K (\big[op/idx]_(i <- r | P i) F i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed. + +Hypothesis Kop : forall x y, K x -> K y -> K (op x y). +Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) : + K (\big[op/idx]_(i <- r | P i) F i). +Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed. + +Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y. +Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) : + \big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i. +Proof. +by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto. +Qed. + +Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx). +Lemma big_endo I r (P : pred I) F : + f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i). +Proof. exact: big_morph. Qed. + +End Elim1. + +Arguments big_rec [R] K [idx op] _ [I r P F]. +Arguments big_ind [R] K [idx op] _ _ [I r P F]. +Arguments eq_big_op [R] K [idx op] op' _ _ _ [I]. +Arguments big_endo [R] f [idx op] _ _ [I]. + +(* zmodp -------------------------------------------------------------------- *) + +Lemma ord1 : all_equal_to (@Ordinal 1 0 is_true_true : 'I_1). +Admitted. diff --git a/test-suite/prerequisite/ssr_ssrsyntax1.v b/test-suite/prerequisite/ssr_ssrsyntax1.v new file mode 100644 index 000000000..2b404e2de --- /dev/null +++ b/test-suite/prerequisite/ssr_ssrsyntax1.v @@ -0,0 +1,36 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require ssreflect. +Require Import Arith. + +Goal (forall a b, a + b = b + a). +intros. +rewrite plus_comm, plus_comm. +split. +Abort. + +Module Foo. +Import ssreflect. + +Goal (forall a b, a + b = b + a). +intros. +rewrite 2![_ + _]plus_comm. +split. +Abort. +End Foo. + +Goal (forall a b, a + b = b + a). +intros. +rewrite plus_comm, plus_comm. +split. +Abort. diff --git a/test-suite/ssr/absevarprop.v b/test-suite/ssr/absevarprop.v new file mode 100644 index 000000000..fa1de0095 --- /dev/null +++ b/test-suite/ssr/absevarprop.v @@ -0,0 +1,96 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect ssrbool ssrfun. +Require Import TestSuite.ssr_mini_mathcomp. + +Lemma test15: forall (y : nat) (x : 'I_2), y < 1 -> val x = y -> Some x = insub y. +move=> y x le_1 defx; rewrite insubT ?(leq_trans le_1) // => ?. +by congr (Some _); apply: val_inj=> /=; exact: defx. +Qed. + +Axiom P : nat -> Prop. +Axiom Q : forall n, P n -> Prop. +Definition R := fun (x : nat) (p : P x) m (q : P (x+1)) => m > 0. + +Inductive myEx : Type := ExI : forall n (pn : P n) pn', Q n pn -> R n pn n pn' -> myEx. + +Variable P1 : P 1. +Variable P11 : P (1 + 1). +Variable Q1 : forall P1, Q 1 P1. + +Lemma testmE1 : myEx. +Proof. +apply: ExI 1 _ _ _ _. + match goal with |- P 1 => exact: P1 | _ => fail end. + match goal with |- P (1+1) => exact: P11 | _ => fail end. + match goal with |- forall p : P 1, Q 1 p => move=> *; exact: Q1 | _ => fail end. +match goal with |- forall (p : P 1) (q : P (1+1)), is_true (R 1 p 1 q) => done | _ => fail end. +Qed. + +Lemma testE2 : exists y : { x | P x }, sval y = 1. +Proof. +apply: ex_intro (exist _ 1 _) _. + match goal with |- P 1 => exact: P1 | _ => fail end. +match goal with |- forall p : P 1, @sval _ _ (@exist _ _ 1 p) = 1 => done | _ => fail end. +Qed. + +Lemma testE3 : exists y : { x | P x }, sval y = 1. +Proof. +have := (ex_intro _ (exist _ 1 _) _); apply. + match goal with |- P 1 => exact: P1 | _ => fail end. +match goal with |- forall p : P 1, @sval _ _ (@exist _ _ 1 p) = 1 => done | _ => fail end. +Qed. + +Lemma testE4 : P 2 -> exists y : { x | P x }, sval y = 2. +Proof. +move=> P2; apply: ex_intro (exist _ 2 _) _. +match goal with |- @sval _ _ (@exist _ _ 2 P2) = 2 => done | _ => fail end. +Qed. + +Hint Resolve P1. + +Lemma testmE12 : myEx. +Proof. +apply: ExI 1 _ _ _ _. + match goal with |- P (1+1) => exact: P11 | _ => fail end. + match goal with |- Q 1 P1 => exact: Q1 | _ => fail end. +match goal with |- forall (q : P (1+1)), is_true (R 1 P1 1 q) => done | _ => fail end. +Qed. + +Create HintDb SSR. + +Hint Resolve P11 : SSR. + +Ltac ssrautoprop := trivial with SSR. + +Lemma testmE13 : myEx. +Proof. +apply: ExI 1 _ _ _ _. + match goal with |- Q 1 P1 => exact: Q1 | _ => fail end. +match goal with |- is_true (R 1 P1 1 P11) => done | _ => fail end. +Qed. + +Definition R1 := fun (x : nat) (p : P x) m (q : P (x+1)) (r : Q x p) => m > 0. + +Inductive myEx1 : Type := + ExI1 : forall n (pn : P n) pn' (q : Q n pn), R1 n pn n pn' q -> myEx1. + +Hint Resolve (Q1 P1) : SSR. + +(* tests that goals in prop are solved in the right order, propagating instantiations, + thus the goal Q 1 ?p1 is faced by trivial after ?p1, and is thus evar free *) +Lemma testmE14 : myEx1. +Proof. +apply: ExI1 1 _ _ _ _. +match goal with |- is_true (R1 1 P1 1 P11 (Q1 P1)) => done | _ => fail end. +Qed. diff --git a/test-suite/ssr/abstract_var2.v b/test-suite/ssr/abstract_var2.v new file mode 100644 index 000000000..7c57d2024 --- /dev/null +++ b/test-suite/ssr/abstract_var2.v @@ -0,0 +1,25 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +Require Import ssreflect. + +Set Implicit Arguments. + +Axiom P : nat -> nat -> Prop. + +Axiom tr : + forall x y z, P x y -> P y z -> P x z. + +Lemma test a b c : P a c -> P a b. +Proof. +intro H. +Fail have [: s1 s2] H1 : P a b := @tr _ _ _ s1 s2. +have [: w s1 s2] H1 : P a b := @tr _ w _ s1 s2. +Abort. diff --git a/test-suite/ssr/binders.v b/test-suite/ssr/binders.v new file mode 100644 index 000000000..97b7d830f --- /dev/null +++ b/test-suite/ssr/binders.v @@ -0,0 +1,55 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Lemma test (x : bool) : True. +have H1 x := x. +have (x) := x => H2. +have H3 T (x : T) := x. +have ? : bool := H1 _ x. +have ? : bool := H2 _ x. +have ? : bool := H3 _ x. +have ? (z : bool) : forall y : bool, z = z := fun y => refl_equal _. +have ? w : w = w := @refl_equal nat w. +have ? y : true by []. +have ? (z : bool) : z = z. + exact: (@refl_equal _ z). +have ? (z w : bool) : z = z by exact: (@refl_equal _ z). +have H w (a := 3) (_ := 4) : w && true = w. + by rewrite andbT. +exact I. +Qed. + +Lemma test1 : True. +suff (x : bool): x = x /\ True. + by move/(_ true); case=> _. +split; first by exact: (@refl_equal _ x). +suff H y : y && true = y /\ True. + by case: (H true). +suff H1 /= : true && true /\ True. + by rewrite andbT; split; [exact: (@refl_equal _ y) | exact: I]. +match goal with |- is_true true /\ True => idtac end. +by split. +Qed. + +Lemma foo n : n >= 0. +have f i (j := i + n) : j < n. + match goal with j := i + n |- _ => idtac end. +Undo 2. +suff f i (j := i + n) : j < n. + done. +match goal with j := i + n |- _ => idtac end. +Undo 3. +done. +Qed. diff --git a/test-suite/ssr/binders_of.v b/test-suite/ssr/binders_of.v new file mode 100644 index 000000000..69b52eace --- /dev/null +++ b/test-suite/ssr/binders_of.v @@ -0,0 +1,23 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + + +Require Import ssreflect. +Require Import TestSuite.ssr_mini_mathcomp. + +Lemma test1 : True. +have f of seq nat & nat : nat. + exact 3. +have g of nat := 3. +have h of nat : nat := 3. +have _ : f [::] 3 = g 3 + h 4. +Admitted. diff --git a/test-suite/ssr/caseview.v b/test-suite/ssr/caseview.v new file mode 100644 index 000000000..94b064b02 --- /dev/null +++ b/test-suite/ssr/caseview.v @@ -0,0 +1,17 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Lemma test (A B : Prop) : A /\ B -> True. +Proof. by case=> _ /id _. Qed. diff --git a/test-suite/ssr/congr.v b/test-suite/ssr/congr.v new file mode 100644 index 000000000..7e60b04a6 --- /dev/null +++ b/test-suite/ssr/congr.v @@ -0,0 +1,34 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Lemma test1 : forall a b : nat, a == b -> a == 0 -> b == 0. +Proof. move=> a b Eab Eac; congr (_ == 0) : Eac; exact: eqP Eab. Qed. + +Definition arrow A B := A -> B. + +Lemma test2 : forall a b : nat, a == b -> arrow (a == 0) (b == 0). +Proof. move=> a b Eab; congr (_ == 0); exact: eqP Eab. Qed. + +Definition equals T (A B : T) := A = B. + +Lemma test3 : forall a b : nat, a = b -> equals nat (a + b) (b + b). +Proof. move=> a b E; congr (_ + _); exact E. Qed. + +Variable S : eqType. +Variable f : nat -> S. +Coercion f : nat >-> Equality.sort. + +Lemma test4 : forall a b : nat, b = a -> @eq S (b + b) (a + a). +Proof. move=> a b Eba; congr (_ + _); exact: Eba. Qed. diff --git a/test-suite/ssr/deferclear.v b/test-suite/ssr/deferclear.v new file mode 100644 index 000000000..85353dadf --- /dev/null +++ b/test-suite/ssr/deferclear.v @@ -0,0 +1,37 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Variable T : Type. + +Lemma test0 : forall a b c d : T, True. +Proof. by move=> a b {a} a c; exact I. Qed. + +Variable P : T -> Prop. + +Lemma test1 : forall a b c : T, P a -> forall d : T, True. +Proof. move=> a b {a} a _ d; exact I. Qed. + +Definition Q := forall x y : nat, x = y. +Axiom L : 0 = 0 -> Q. +Axiom L' : 0 = 0 -> forall x y : nat, x = y. +Lemma test3 : Q. +by apply/L. +Undo. +rewrite /Q. +by apply/L. +Undo 2. +by apply/L'. +Qed. diff --git a/test-suite/ssr/dependent_type_err.v b/test-suite/ssr/dependent_type_err.v new file mode 100644 index 000000000..a5789d8dd --- /dev/null +++ b/test-suite/ssr/dependent_type_err.v @@ -0,0 +1,20 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp. + +Lemma ltn_leq_trans : forall n m p : nat, m < n -> n <= p -> m < p. +move=> n m p Hmn Hnp; rewrite -ltnS. +Fail rewrite (_ : forall n0 m0 p0 : nat, m0 <= n0 -> n0 < p0 -> m0 < p0). +Fail rewrite leq_ltn_trans. +Admitted. diff --git a/test-suite/ssr/derive_inversion.v b/test-suite/ssr/derive_inversion.v new file mode 100644 index 000000000..abf63a20c --- /dev/null +++ b/test-suite/ssr/derive_inversion.v @@ -0,0 +1,29 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +Require Import ssreflect ssrbool. + +Set Implicit Arguments. + + Inductive wf T : bool -> option T -> Type := + | wf_f : wf false None + | wf_t : forall x, wf true (Some x). + + Derive Inversion wf_inv with (forall T b (o : option T), wf b o) Sort Prop. + + Lemma Problem T b (o : option T) : + wf b o -> + match b with + | true => exists x, o = Some x + | false => o = None + end. + Proof. + by case: b; elim/wf_inv=> //; case: o=> // a *; exists a. + Qed. diff --git a/test-suite/ssr/elim.v b/test-suite/ssr/elim.v new file mode 100644 index 000000000..908249a36 --- /dev/null +++ b/test-suite/ssr/elim.v @@ -0,0 +1,279 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp. +Axiom daemon : False. Ltac myadmit := case: daemon. + +(* Ltac debugging feature: recursive elim + eq generation *) +Lemma testL1 : forall A (s : seq A), s = s. +Proof. +move=> A s; elim branch: s => [|x xs _]. +match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. +match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. +Qed. + +(* The same but with explicit eliminator and a conflict in the intro pattern *) +Lemma testL2 : forall A (s : seq A), s = s. +Proof. +move=> A s; elim/last_ind branch: s => [|x s _]. +match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. +match goal with _ : _ = rcons _ _ |- rcons _ _ = rcons _ _ => move: branch => // | _ => fail end. +Qed. + +(* The same but without names for variables involved in the generated eq *) +Lemma testL3 : forall A (s : seq A), s = s. +Proof. +move=> A s; elim branch: s; move: (s) => _. +match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. +move=> _; match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. +Qed. + +Inductive foo : Type := K1 : foo | K2 : foo -> foo -> foo | K3 : (nat -> foo) -> foo. + +(* The same but with more intros to be done *) +Lemma testL4 : forall (o : foo), o = o. +Proof. +move=> o; elim branch: o. +match goal with _ : _ = K1 |- K1 = K1 => move: branch => // | _ => fail end. +move=> _; match goal with _ : _ = K2 _ _ |- K2 _ _ = K2 _ _ => move: branch => // | _ => fail end. +move=> _; match goal with _ : _ = K3 _ |- K3 _ = K3 _ => move: branch => // | _ => fail end. +Qed. + +(* Occurrence counting *) +Lemma testO1: forall (b : bool), b = b. +Proof. +move=> b; case: (b) / idP. +match goal with |- is_true b -> true = true => done | _ => fail end. +match goal with |- ~ is_true b -> false = false => done | _ => fail end. +Qed. + +(* The same but only the second occ *) +Lemma testO2: forall (b : bool), b = b. +Proof. +move=> b; case: {2}(b) / idP. +match goal with |- is_true b -> b = true => done | _ => fail end. +match goal with |- ~ is_true b -> b = false => move/(introF idP) => // | _ => fail end. +Qed. + +(* The same but with eq generation *) +Lemma testO3: forall (b : bool), b = b. +Proof. +move=> b; case E: {2}(b) / idP. +match goal with _ : is_true b, _ : b = true |- b = true => move: E => _; done | _ => fail end. +match goal with H : ~ is_true b, _ : b = false |- b = false => move: E => _; move/(introF idP): H => // | _ => fail end. +Qed. + +(* Views *) +Lemma testV1 : forall A (s : seq A), s = s. +Proof. +move=> A s; case/lastP E: {1}s => [| x xs]. +match goal with _ : s = [::] |- [::] = s => symmetry; exact E | _ => fail end. +match goal with _ : s = rcons x xs |- rcons _ _ = s => symmetry; exact E | _ => fail end. +Qed. + +Lemma testV2 : forall A (s : seq A), s = s. +Proof. +move=> A s; case/lastP E: s => [| x xs]. +match goal with _ : s = [::] |- [::] = [::] => done | _ => fail end. +match goal with _ : s = rcons x xs |- rcons _ _ = rcons _ _ => done | _ => fail end. +Qed. + +Lemma testV3 : forall A (s : seq A), s = s. +Proof. +move=> A s; case/lastP: s => [| x xs]. +match goal with |- [::] = [::] => done | _ => fail end. +match goal with |- rcons _ _ = rcons _ _ => done | _ => fail end. +Qed. + +(* Patterns *) +Lemma testP1: forall (x y : nat), (y == x) && (y == x) -> y == x. +move=> x y; elim: {2}(_ == _) / eqP. +match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. +match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. +Qed. + +(* The same but with an implicit pattern *) +Lemma testP2 : forall (x y : nat), (y == x) && (y == x) -> y == x. +move=> x y; elim: {2}_ / eqP. +match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. +match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. +Qed. + +(* The same but with an eq generation switch *) +Lemma testP3 : forall (x y : nat), (y == x) && (y == x) -> y == x. +move=> x y; elim E: {2}_ / eqP. +match goal with _ : y = x |- (is_true ((y == x) && true) -> is_true (y == x)) => rewrite E; reflexivity | _ => fail end. +match goal with _ : y <> x |- (is_true ((y == x) && false) -> is_true (y == x)) => rewrite E => /= H; exact H | _ => fail end. +Qed. + +Inductive spec : nat -> nat -> nat -> Prop := +| specK : forall a b c, a = 0 -> b = 2 -> c = 4 -> spec a b c. +Lemma specP : spec 0 2 4. Proof. by constructor. Qed. + +Lemma testP4 : (1+1) * 4 = 2 + (1+1) + (2 + 2). +Proof. +case: specP => a b c defa defb defc. +match goal with |- (a.+1 + a.+1) * c = b + (a.+1 + a.+1) + (b + b) => subst; done | _ => fail end. +Qed. + +Lemma testP5 : (1+1) * 4 = 2 + (1+1) + (2 + 2). +Proof. +case: (1 + 1) _ / specP => a b c defa defb defc. +match goal with |- b * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. +Qed. + +Lemma testP6 : (1+1) * 4 = 2 + (1+1) + (2 + 2). +Proof. +case: {2}(1 + 1) _ / specP => a b c defa defb defc. +match goal with |- (a.+1 + a.+1) * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. +Qed. + +Lemma testP7 : (1+1) * 4 = 2 + (1+1) + (2 + 2). +Proof. +case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc. +match goal with |- b * a.+4 = c + c => subst; done | _ => fail end. +Qed. + +Lemma testP8 : (1+1) * 4 = 2 + (1+1) + (2 + 2). +Proof. +case E: (1 + 1) (2 + _) / specP=> [a b c defa defb defc]. +match goal with |- b * a.+4 = c + c => subst; done | _ => fail end. +Qed. + +Variables (T : Type) (tr : T -> T). + +Inductive exec (cf0 cf1 : T) : seq T -> Prop := +| exec_step : tr cf0 = cf1 -> exec cf0 cf1 [::] +| exec_star : forall cf2 t, tr cf0 = cf2 -> + exec cf2 cf1 t -> exec cf0 cf1 (cf2 :: t). + +Inductive execr (cf0 cf1 : T) : seq T -> Prop := +| execr_step : tr cf0 = cf1 -> execr cf0 cf1 [::] +| execr_star : forall cf2 t, execr cf0 cf2 t -> + tr cf2 = cf1 -> execr cf0 cf1 (t ++ [:: cf2]). + +Lemma execP : forall cf0 cf1 t, exec cf0 cf1 t <-> execr cf0 cf1 t. +Proof. +move=> cf0 cf1 t; split => [] Ecf. + elim: Ecf. + match goal with |- forall cf2 cf3 : T, tr cf2 = cf3 -> + execr cf2 cf3 [::] => myadmit | _ => fail end. + match goal with |- forall (cf2 cf3 cf4 : T) (t0 : seq T), + tr cf2 = cf4 -> exec cf4 cf3 t0 -> execr cf4 cf3 t0 -> + execr cf2 cf3 (cf4 :: t0) => myadmit | _ => fail end. +elim: Ecf. + match goal with |- forall cf2 : T, + tr cf0 = cf2 -> exec cf0 cf2 [::] => myadmit | _ => fail end. +match goal with |- forall (cf2 cf3 : T) (t0 : seq T), + execr cf0 cf3 t0 -> exec cf0 cf3 t0 -> tr cf3 = cf2 -> + exec cf0 cf2 (t0 ++ [:: cf3]) => myadmit | _ => fail end. +Qed. + +Fixpoint plus (m n : nat) {struct n} : nat := + match n with + | 0 => m + | S p => S (plus m p) + end. + +Definition plus_equation : +forall m n : nat, + plus m n = + match n with + | 0 => m + | p.+1 => (plus m p).+1 + end +:= +fun m n : nat => +match + n as n0 + return + (forall m0 : nat, + plus m0 n0 = + match n0 with + | 0 => m0 + | p.+1 => (plus m0 p).+1 + end) +with +| 0 => @erefl nat +| n0.+1 => fun m0 : nat => erefl (plus m0 n0).+1 +end m. + +Definition plus_rect : +forall (m : nat) (P : nat -> nat -> Type), + (forall n : nat, n = 0 -> P 0 m) -> + (forall n p : nat, + n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) -> + forall n : nat, P n (plus m n) +:= +fun (m : nat) (P : nat -> nat -> Type) + (f0 : forall n : nat, n = 0 -> P 0 m) + (f : forall n p : nat, + n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) => +fix plus0 (n : nat) : P n (plus m n) := + eq_rect_r [eta P n] + (let f1 := f0 n in + let f2 := f n in + match + n as n0 + return + (n = n0 -> + (forall p : nat, + n0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) -> + (n0 = 0 -> P 0 m) -> + P n0 match n0 with + | 0 => m + | p.+1 => (plus m p).+1 + end) + with + | 0 => + fun (_ : n = 0) + (_ : forall p : nat, + 0 = p.+1 -> + P p (plus m p) -> P p.+1 (plus m p).+1) + (f4 : 0 = 0 -> P 0 m) => unkeyed (f4 (erefl 0)) + | n0.+1 => + fun (_ : n = n0.+1) + (f3 : forall p : nat, + n0.+1 = p.+1 -> + P p (plus m p) -> P p.+1 (plus m p).+1) + (_ : n0.+1 = 0 -> P 0 m) => + let f5 := + let p := n0 in + let H := erefl n0.+1 : n0.+1 = p.+1 in f3 p H in + unkeyed (let Hrec := plus0 n0 in f5 Hrec) + end (erefl n) f2 f1) (plus_equation m n). + +Definition plus_ind := plus_rect. + +Lemma exF x y z: plus (plus x y) z = plus x (plus y z). +elim/plus_ind: z / (plus _ z). +match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. +Undo 2. +elim/plus_ind: (plus _ z). +match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. +Undo 2. +elim/plus_ind: {z}(plus _ z). +match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. +Undo 2. +elim/plus_ind: {z}_. +match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. +Undo 2. +elim/plus_ind: z / _. +match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. + done. +by move=> _ p _ ->. +Qed. + +(* BUG elim-False *) +Lemma testeF : False -> 1 = 0. +Proof. by elim. Qed. diff --git a/test-suite/ssr/elim2.v b/test-suite/ssr/elim2.v new file mode 100644 index 000000000..c7c20d8f8 --- /dev/null +++ b/test-suite/ssr/elim2.v @@ -0,0 +1,74 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. +(* div fintype finfun path bigop. *) + +Axiom daemon : False. Ltac myadmit := case: daemon. + +Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F : + let s := \big[op/idx]_(i <- r | P i) F i in + K s * K' s -> K' s. +Proof. by move=> /= [_]. Qed. +Arguments big_load [R] K [K' idx op I r P F]. + +Section Elim1. + +Variables (R : Type) (K : R -> Type) (f : R -> R). +Variables (idx : R) (op op' : R -> R -> R). + +Hypothesis Kid : K idx. + +Ltac ASSERT1 := match goal with |- (K idx) => myadmit end. +Ltac ASSERT2 K := match goal with |- (forall x1 : R, R -> + forall y1 : R, R -> K x1 -> K y1 -> K (op x1 y1)) => myadmit end. + + +Lemma big_rec I r (P : pred I) F + (Kop : forall i x, P i -> K x -> K (op (F i) x)) : + K (\big[op/idx]_(i <- r | P i) F i). +Proof. +elim/big_ind2: {-}_. + ASSERT1. ASSERT2 K. match goal with |- (forall i : I, is_true (P i) -> K (F i)) => myadmit end. Undo 4. +elim/big_ind2: _ / {-}_. + ASSERT1. ASSERT2 K. match goal with |- (forall i : I, is_true (P i) -> K (F i)) => myadmit end. Undo 4. + +elim/big_rec2: (\big[op/idx]_(i <- r | P i) op idx (F i)) + / (\big[op/idx]_(i <- r | P i) F i). + ASSERT1. match goal with |- (forall i : I, R -> forall y2 : R, is_true (P i) -> K y2 -> K (op (F i) y2)) => myadmit end. Undo 3. + +elim/(big_load (phantom R)): _. + Undo. + +Fail elim/big_rec2: {2}_. + +elim/big_rec2: (\big[op/idx]_(i <- r | P i) F i) + / {1}(\big[op/idx]_(i <- r | P i) F i). + Undo. + +elim/(big_load (phantom R)): _. +Undo. + +Fail elim/big_rec2: _ / {2}(\big[op/idx]_(i <- r | P i) F i). +Admitted. + +Definition morecomplexthannecessary A (P : A -> A -> Prop) x y := P x y. + +Lemma grab A (P : A -> A -> Prop) n m : (n = m) -> (P n n) -> morecomplexthannecessary A P n m. +by move->. +Qed. + +Goal forall n m, m + (n + m) = m + (n * 1 + m). +Proof. move=> n m; elim/grab : (_ * _) / {1}n => //; exact: muln1. Qed. + +End Elim1. diff --git a/test-suite/ssr/elim_pattern.v b/test-suite/ssr/elim_pattern.v new file mode 100644 index 000000000..ef4658287 --- /dev/null +++ b/test-suite/ssr/elim_pattern.v @@ -0,0 +1,27 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. +Axiom daemon : False. Ltac myadmit := case: daemon. + +Lemma test x : (x == x) = (x + x.+1 == 2 * x + 1). +case: (X in _ = X) / eqP => _. +match goal with |- (x == x) = true => myadmit end. +match goal with |- (x == x) = false => myadmit end. +Qed. + +Lemma test1 x : (x == x) = (x + x.+1 == 2 * x + 1). +elim: (x in RHS). +match goal with |- (x == x) = _ => myadmit end. +match goal with |- forall n, (x == x) = _ -> (x == x) = _ => myadmit end. +Qed. diff --git a/test-suite/ssr/first_n.v b/test-suite/ssr/first_n.v new file mode 100644 index 000000000..4971add91 --- /dev/null +++ b/test-suite/ssr/first_n.v @@ -0,0 +1,21 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. + +Lemma test : False -> (bool -> False -> True -> True) -> True. +move=> F; let w := constr:(2) in apply; last w first. +- by apply: F. +- by apply: I. +- by apply: true. +Qed. diff --git a/test-suite/ssr/gen_have.v b/test-suite/ssr/gen_have.v new file mode 100644 index 000000000..249e006f9 --- /dev/null +++ b/test-suite/ssr/gen_have.v @@ -0,0 +1,174 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp. +Axiom daemon : False. Ltac myadmit := case: daemon. + +Axiom P : nat -> Prop. +Lemma clear_test (b1 b2 : bool) : b2 = b2. +Proof. +(* wlog gH : (b3 := b2) / b2 = b3. myadmit. *) +gen have {b1} H, gH : (b3 := b2) (w := erefl 3) / b2 = b3. + myadmit. +Fail exact (H b1). +exact (H b2 (erefl _)). +Qed. + + +Lemma test1 n (ngt0 : 0 < n) : P n. +gen have lt2le, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0). + match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. +Check (lt2le : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). +Check (H1 : 0 <= n). +Check (H2 : n != 0). +myadmit. +Qed. + +Lemma test2 n (ngt0 : 0 < n) : P n. +gen have _, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0). + match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. +lazymatch goal with + | lt2le : forall n : nat, is_true(0 < n) -> is_true((0 <= n) && (n != 0)) + |- _ => fail "not cleared" + | _ => idtac end. +Check (H1 : 0 <= n). +Check (H2 : n != 0). +myadmit. +Qed. + +Lemma test3 n (ngt0 : 0 < n) : P n. +gen have H : n ngt0 / (0 <= n) && (n != 0). + match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. +Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). +myadmit. +Qed. + +Lemma test4 n (ngt0 : 0 < n) : P n. +gen have : n ngt0 / (0 <= n) && (n != 0). + match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. +move=> H. +Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). +myadmit. +Qed. + +Lemma test4bis n (ngt0 : 0 < n) : P n. +wlog suff : n ngt0 / (0 <= n) && (n != 0); last first. + match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. +move=> H. +Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). +myadmit. +Qed. + +Lemma test5 n (ngt0 : 0 < n) : P n. +Fail gen have : / (0 <= n) && (n != 0). +Abort. + +Lemma test6 n (ngt0 : 0 < n) : P n. +gen have : n ngt0 / (0 <= n) && (n != 0) by myadmit. +Abort. + +Lemma test7 n (ngt0 : 0 < n) : P n. +Fail gen have : n / (0 <= n) && (n != 0). +Abort. + +Lemma test3wlog2 n (ngt0 : 0 < n) : P n. +gen have H : (m := n) ngt0 / (0 <= m) && (m != 0). + match goal with + ngt0 : is_true(0 < m) |- is_true((0 <= m) && (m != 0)) => myadmit end. +Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). +myadmit. +Qed. + +Lemma test3wlog3 n (ngt0 : 0 < n) : P n. +gen have H : {n} (m := n) (n := 0) ngt0 / (0 <= m) && (m != n). + match goal with + ngt0 : is_true(n < m) |- is_true((0 <= m) && (m != n)) => myadmit end. +Check (H : forall m n : nat, n < m -> (0 <= m) && (m != n)). +myadmit. +Qed. + +Lemma testw1 n (ngt0 : 0 < n) : n <= 0. +wlog H : (z := 0) (m := n) ngt0 / m != 0. + match goal with + |- (forall z m, + is_true(z < m) -> is_true(m != 0) -> is_true(m <= z)) -> + is_true(n <= 0) => myadmit end. +Check(n : nat). +Check(m : nat). +Check(z : nat). +Check(ngt0 : z < m). +Check(H : m != 0). +myadmit. +Qed. + +Lemma testw2 n (ngt0 : 0 < n) : n <= 0. +wlog H : (m := n) (z := (X in n <= X)) ngt0 / m != z. + match goal with + |- (forall m z : nat, + is_true(0 < m) -> is_true(m != z) -> is_true(m <= z)) -> + is_true(n <= 0) => idtac end. +Restart. +wlog H : (m := n) (one := (X in X <= _)) ngt0 / m != one. + match goal with + |- (forall m one : nat, + is_true(one <= m) -> is_true(m != one) -> is_true(m <= 0)) -> + is_true(n <= 0) => idtac end. +Restart. +wlog H : {n} (m := n) (z := (X in _ <= X)) ngt0 / m != z. + match goal with + |- (forall m z : nat, + is_true(0 < z) -> is_true(m != z) -> is_true(m <= 0)) -> + is_true(n <= 0) => idtac end. + myadmit. +Fail Check n. +myadmit. +Qed. + +Section Test. +Variable x : nat. +Definition addx y := y + x. + +Lemma testw3 (m n : nat) (ngt0 : 0 < n) : n <= addx x. +wlog H : (n0 := n) (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y. + myadmit. +myadmit. +Qed. + + +Definition twox := x + x. +Definition bis := twox. + +Lemma testw3x n (ngt0 : 0 < n) : n + x <= twox. +wlog H : (y := x) (@twoy := (X in _ <= X)) / twoy = 2 * y. + match goal with + |- (forall y : nat, + let twoy := y + y in + twoy = 2 * y -> is_true(n + y <= twoy)) -> + is_true(n + x <= twox) => myadmit end. +Restart. +wlog H : (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y. + match goal with + |- (forall y : nat, + let twoy := twox in + twoy = 2 * y -> is_true(n + y <= twoy)) -> + is_true(n + x <= twox) => myadmit end. +myadmit. +Qed. + +End Test. + +Lemma test_in n k (def_k : k = 0) (ngtk : k < n) : P n. +rewrite -(add0n n) in {def_k k ngtk} (m := k) (def_m := def_k) (ngtm := ngtk). +rewrite def_m add0n in {ngtm} (e := erefl 0 ) (ngt0 := ngtm) => {def_m}. +myadmit. +Qed. diff --git a/test-suite/ssr/gen_pattern.v b/test-suite/ssr/gen_pattern.v new file mode 100644 index 000000000..c0592e884 --- /dev/null +++ b/test-suite/ssr/gen_pattern.v @@ -0,0 +1,33 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Notation "( a 'in' c )" := (a + c) (only parsing) : myscope. +Delimit Scope myscope with myscope. + +Notation "( a 'in' c )" := (a + c) (only parsing). + +Lemma foo x y : x + x.+1 = x.+1 + y. +move: {x} (x.+1) {1}x y (x.+1 in RHS). + match goal with |- forall a b c d, b + a = d + c => idtac end. +Admitted. + +Lemma bar x y : x + x.+1 = x.+1 + y. +move E: ((x.+1 in y)) => w. + match goal with |- x + x.+1 = w => rewrite -{w}E end. +move E: (x.+1 in y)%myscope => w. + match goal with |- x + x.+1 = w => rewrite -{w}E end. +move E: ((x + y).+1 as RHS) => w. + match goal with |- x + x.+1 = w => rewrite -{}E -addSn end. +Admitted. diff --git a/test-suite/ssr/have_TC.v b/test-suite/ssr/have_TC.v new file mode 100644 index 000000000..b3a26ed2c --- /dev/null +++ b/test-suite/ssr/have_TC.v @@ -0,0 +1,50 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + +Axiom daemon : False. Ltac myadmit := case: daemon. + +Class foo (T : Type) := { n : nat }. +Instance five : foo nat := {| n := 5 |}. + +Definition bar T {f : foo T} m : Prop := + @n _ f = m. + +Eval compute in (bar nat 7). + +Lemma a : True. +set toto := bar _ 8. +have titi : bar _ 5. + reflexivity. +have titi2 : bar _ 5 := . + Fail reflexivity. + by myadmit. +have totoc (H : bar _ 5) : 3 = 3 := eq_refl. +move/totoc: nat => _. +exact I. +Qed. + +Set SsrHave NoTCResolution. + +Lemma a' : True. +set toto := bar _ 8. +have titi : bar _ 5. + Fail reflexivity. + by myadmit. +have titi2 : bar _ 5 := . + Fail reflexivity. + by myadmit. +have totoc (H : bar _ 5) : 3 = 3 := eq_refl. +move/totoc: nat => _. +exact I. +Qed. diff --git a/test-suite/ssr/have_transp.v b/test-suite/ssr/have_transp.v new file mode 100644 index 000000000..1c998da71 --- /dev/null +++ b/test-suite/ssr/have_transp.v @@ -0,0 +1,48 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp. + + +Lemma test1 n : n >= 0. +Proof. +have [:s1] @h m : 'I_(n+m).+1. + apply: Sub 0 _. + abstract: s1 m. + by auto. +cut (forall m, 0 < (n+m).+1); last assumption. +rewrite [_ 1 _]/= in s1 h *. +by []. +Qed. + +Lemma test2 n : n >= 0. +Proof. +have [:s1] @h m : 'I_(n+m).+1 := Sub 0 (s1 m). + move=> m; reflexivity. +cut (forall m, 0 < (n+m).+1); last assumption. +by []. +Qed. + +Lemma test3 n : n >= 0. +Proof. +Fail have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0 (s1 m)); auto. +have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract: s1 m; auto. +cut (forall m, 0 < (n+m).+1); last assumption. +by []. +Qed. + +Lemma test4 n : n >= 0. +Proof. +have @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract auto. +by []. +Qed. diff --git a/test-suite/ssr/have_view_idiom.v b/test-suite/ssr/have_view_idiom.v new file mode 100644 index 000000000..3d6c9d980 --- /dev/null +++ b/test-suite/ssr/have_view_idiom.v @@ -0,0 +1,18 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. + +Lemma test (a b : bool) (pab : a && b) : b. +have {pab} /= /andP [pa -> //] /= : true && (a && b) := pab. +Qed. diff --git a/test-suite/ssr/havesuff.v b/test-suite/ssr/havesuff.v new file mode 100644 index 000000000..aa1f71879 --- /dev/null +++ b/test-suite/ssr/havesuff.v @@ -0,0 +1,85 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Variables P G : Prop. + +Lemma test1 : (P -> G) -> P -> G. +Proof. +move=> pg p. +have suff {pg} H : P. + match goal with |- P -> G => move=> _; exact: pg p | _ => fail end. +match goal with H : P -> G |- G => exact: H p | _ => fail end. +Qed. + +Lemma test2 : (P -> G) -> P -> G. +Proof. +move=> pg p. +have suffices {pg} H : P. + match goal with |- P -> G => move=> _; exact: pg p | _ => fail end. +match goal with H : P -> G |- G => exact: H p | _ => fail end. +Qed. + +Lemma test3 : (P -> G) -> P -> G. +Proof. +move=> pg p. +suff have {pg} H : P. + match goal with H : P |- G => exact: pg H | _ => fail end. +match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. +Qed. + +Lemma test4 : (P -> G) -> P -> G. +Proof. +move=> pg p. +suffices have {pg} H: P. + match goal with H : P |- G => exact: pg H | _ => fail end. +match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. +Qed. + +(* +Lemma test5 : (P -> G) -> P -> G. +Proof. +move=> pg p. +suff have {pg} H : P := pg H. +match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. +Qed. +*) + +(* +Lemma test6 : (P -> G) -> P -> G. +Proof. +move=> pg p. +suff have {pg} H := pg H. +match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. +Qed. +*) + +Lemma test7 : (P -> G) -> P -> G. +Proof. +move=> pg p. +have suff {pg} H : P := pg. +match goal with H : P -> G |- G => exact: H p | _ => fail end. +Qed. + +Lemma test8 : (P -> G) -> P -> G. +Proof. +move=> pg p. +have suff {pg} H := pg. +match goal with H : P -> G |- G => exact: H p | _ => fail end. +Qed. + +Goal forall x y : bool, x = y -> x = y. +move=> x y E. +by have {x E} -> : x = y by []. +Qed. diff --git a/test-suite/ssr/if_isnt.v b/test-suite/ssr/if_isnt.v new file mode 100644 index 000000000..b8f6b7739 --- /dev/null +++ b/test-suite/ssr/if_isnt.v @@ -0,0 +1,22 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Definition unopt (x : option bool) := + if x isn't Some x then false else x. + +Lemma test1 : unopt None = false /\ + unopt (Some false) = false /\ + unopt (Some true) = true. +Proof. by auto. Qed. diff --git a/test-suite/ssr/intro_beta.v b/test-suite/ssr/intro_beta.v new file mode 100644 index 000000000..8a164bd80 --- /dev/null +++ b/test-suite/ssr/intro_beta.v @@ -0,0 +1,25 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Axiom T : Type. + +Definition C (P : T -> Prop) := forall x, P x. + +Axiom P : T -> T -> Prop. + +Lemma foo : C (fun x => forall y, let z := x in P y x). +move=> a b. +match goal with |- (let y := _ in _) => idtac end. +Admitted. diff --git a/test-suite/ssr/intro_noop.v b/test-suite/ssr/intro_noop.v new file mode 100644 index 000000000..fdc85173a --- /dev/null +++ b/test-suite/ssr/intro_noop.v @@ -0,0 +1,37 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. +Axiom daemon : False. Ltac myadmit := case: daemon. + +Lemma v : True -> bool -> bool. Proof. by []. Qed. + +Reserved Notation " a -/ b " (at level 0). +Reserved Notation " a -// b " (at level 0). +Reserved Notation " a -/= b " (at level 0). +Reserved Notation " a -//= b " (at level 0). + +Lemma test : forall a b c, a || b || c. +Proof. +move=> ---a--- - -/=- -//- -/=- -//=- b [|-]. +move: {-}a => /v/v-H; have _ := H I I. +Fail move: {-}a {H} => /v-/v-H. +have - -> : a = (id a) by []. +have --> : a = (id a) by []. +have - - _ : a = (id a) by []. +have -{1}-> : a = (id a) by []. + by myadmit. +move: a. +case: b => -[] //. +by myadmit. +Qed. diff --git a/test-suite/ssr/ipatalternation.v b/test-suite/ssr/ipatalternation.v new file mode 100644 index 000000000..6aa9a954c --- /dev/null +++ b/test-suite/ssr/ipatalternation.v @@ -0,0 +1,18 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Lemma test1 : Prop -> Prop -> Prop -> Prop -> Prop -> True = False -> Prop -> True \/ True. +by move=> A /= /= /= B C {A} {B} ? _ {C} {1}-> *; right. +Qed. diff --git a/test-suite/ssr/ltac_have.v b/test-suite/ssr/ltac_have.v new file mode 100644 index 000000000..380e52af4 --- /dev/null +++ b/test-suite/ssr/ltac_have.v @@ -0,0 +1,39 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Ltac SUFF1 h t := suff h x (p := x < 0) : t. +Ltac SUFF2 h t := suff h x (p := x < 0) : t by apply h. +Ltac HAVE1 h t u := have h x (p := x < 0) : t := u. +Ltac HAVE2 h t := have h x (p := x < 0) : t by []. +Ltac HAVE3 h t := have h x (p := x < 0) : t. +Ltac HAVES h t := have suff h : t. +Ltac SUFFH h t := suff have h : t. + +Lemma foo z : z < 0. +SUFF1 h1 (z+1 < 0). +Undo. +SUFF2 h2 (z < 0). +Undo. +HAVE1 h3 (z = z) (refl_equal z). +Undo. +HAVE2 h4 (z = z). +Undo. +HAVE3 h5 (z < 0). +Undo. +HAVES h6 (z < 1). +Undo. +SUFFH h7 (z < 1). +Undo. +Admitted. diff --git a/test-suite/ssr/ltac_in.v b/test-suite/ssr/ltac_in.v new file mode 100644 index 000000000..bcdf96dde --- /dev/null +++ b/test-suite/ssr/ltac_in.v @@ -0,0 +1,26 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Set Implicit Arguments. +Unset Strict Implicit. +Import Prenex Implicits. + +(* error 1 *) + +Ltac subst1 H := move: H; rewrite {1} addnC; move => H. +Ltac subst2 H := rewrite addnC in H. + +Goal ( forall a b: nat, b+a = 0 -> b+a=0). +Proof. move=> a b hyp. subst1 hyp. subst2 hyp. done. Qed. diff --git a/test-suite/ssr/move_after.v b/test-suite/ssr/move_after.v new file mode 100644 index 000000000..a7a9afea0 --- /dev/null +++ b/test-suite/ssr/move_after.v @@ -0,0 +1,19 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Goal True -> True -> True. +move=> H1 H2. +move H1 after H2. +Admitted. diff --git a/test-suite/ssr/multiview.v b/test-suite/ssr/multiview.v new file mode 100644 index 000000000..f4e717b38 --- /dev/null +++ b/test-suite/ssr/multiview.v @@ -0,0 +1,58 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Goal forall m n p, n <= p -> m <= n -> m <= p. +by move=> m n p le_n_p /leq_trans; apply. +Undo 1. +by move=> m n p le_n_p /leq_trans /(_ le_n_p) le_m_p; exact: le_m_p. +Undo 1. +by move=> m n p le_n_p /leq_trans ->. +Qed. + +Goal forall P Q X : Prop, Q -> (True -> X -> Q = P) -> X -> P. +by move=> P Q X q V /V <-. +Qed. + +Lemma test0: forall a b, a && a && b -> b. +by move=> a b; repeat move=> /andP []; move=> *. +Qed. + +Lemma test1 : forall a b, a && b -> b. +by move=> a b /andP /andP /andP [] //. +Qed. + +Lemma test2 : forall a b, a && b -> b. +by move=> a b /andP /andP /(@andP a) [] //. +Qed. + +Lemma test3 : forall a b, a && (b && b) -> b. +by move=> a b /andP [_ /andP [_ //]]. +Qed. + +Lemma test4: forall a b, a && b = b && a. +by move=> a b; apply/andP/andP=> ?; apply/andP/andP/andP; rewrite andbC; apply/andP. +Qed. + +Lemma test5: forall C I A O, (True -> O) -> (O -> A) -> (True -> A -> I) -> (I -> C) -> C. +by move=> c i a o O A I C; apply/C/I/A/O. +Qed. + +Lemma test6: forall A B, (A -> B) -> A -> B. +move=> A B A_to_B a; move/A_to_B in a; exact: a. +Qed. + +Lemma test7: forall A B, (A -> B) -> A -> B. +move=> A B A_to_B a; apply A_to_B in a; exact: a. +Qed. diff --git a/test-suite/ssr/occarrow.v b/test-suite/ssr/occarrow.v new file mode 100644 index 000000000..49af7ae08 --- /dev/null +++ b/test-suite/ssr/occarrow.v @@ -0,0 +1,23 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import TestSuite.ssr_mini_mathcomp. + +Lemma test1 : forall n m : nat, n = m -> m * m + n * n = n * n + n * n. +move=> n m E; have [{2}-> _] : n * n = m * n /\ True by move: E => {1}<-. +by move: E => {3}->. +Qed. + +Lemma test2 : forall n m : nat, True /\ (n = m -> n * n = n * m). +by move=> n m; constructor=> [|{2}->]. +Qed. diff --git a/test-suite/ssr/patnoX.v b/test-suite/ssr/patnoX.v new file mode 100644 index 000000000..d69f03ac3 --- /dev/null +++ b/test-suite/ssr/patnoX.v @@ -0,0 +1,18 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. +Goal forall x, x && true = x. +move=> x. +Fail (rewrite [X in _ && _]andbT). +Abort. diff --git a/test-suite/ssr/pattern.v b/test-suite/ssr/pattern.v new file mode 100644 index 000000000..396f4f032 --- /dev/null +++ b/test-suite/ssr/pattern.v @@ -0,0 +1,32 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +Require Import ssrmatching. + +(*Set Debug SsrMatching.*) + +Tactic Notation "at" "[" ssrpatternarg(pat) "]" tactic(t) := + let name := fresh in + let def_name := fresh in + ssrpattern pat; + intro name; + pose proof (refl_equal name) as def_name; + unfold name at 1 in def_name; + t def_name; + [ rewrite <- def_name | idtac.. ]; + clear name def_name. + +Lemma test (H : True -> True -> 3 = 7) : 28 = 3 * 4. +Proof. +at [ X in X * 4 ] ltac:(fun place => rewrite -> H in place). +- reflexivity. +- trivial. +- trivial. +Qed. diff --git a/test-suite/ssr/primproj.v b/test-suite/ssr/primproj.v new file mode 100644 index 000000000..cf61eb436 --- /dev/null +++ b/test-suite/ssr/primproj.v @@ -0,0 +1,164 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + + + +Require Import Setoid. +Set Primitive Projections. + + +Module CoqBug. +Record foo A := Foo { foo_car : A }. + +Definition bar : foo _ := Foo nat 10. + +Variable alias : forall A, foo A -> A. + +Parameter e : @foo_car = alias. + +Goal foo_car _ bar = alias _ bar. +Proof. +(* Coq equally fails *) +Fail rewrite -> e. +Fail rewrite e at 1. +Fail setoid_rewrite e. +Fail setoid_rewrite e at 1. +Set Keyed Unification. +Fail rewrite -> e. +Fail rewrite e at 1. +Fail setoid_rewrite e. +Fail setoid_rewrite e at 1. +Admitted. + +End CoqBug. + +(* ----------------------------------------------- *) +Require Import ssreflect. + +Set Primitive Projections. + +Module T1. + +Record foo A := Foo { foo_car : A }. + +Definition bar : foo _ := Foo nat 10. + +Goal foo_car _ bar = 10. +Proof. +match goal with +| |- foo_car _ bar = 10 => idtac +end. +rewrite /foo_car. +(* +Fail match goal with +| |- foo_car _ bar = 10 => idtac +end. +*) +Admitted. + +End T1. + + +Module T2. + +Record foo {A} := Foo { foo_car : A }. + +Definition bar : foo := Foo nat 10. + +Goal foo_car bar = 10. +match goal with +| |- foo_car bar = 10 => idtac +end. +rewrite /foo_car. +(* +Fail match goal with +| |- foo_car bar = 10 => idtac +end. +*) +Admitted. + +End T2. + + +Module T3. + +Record foo {A} := Foo { foo_car : A }. + +Definition bar : foo := Foo nat 10. + +Goal foo_car bar = 10. +Proof. +rewrite -[foo_car _]/(id _). +match goal with |- id _ = 10 => idtac end. +Admitted. + +Goal foo_car bar = 10. +Proof. +set x := foo_car _. +match goal with |- x = 10 => idtac end. +Admitted. + +End T3. + +Module T4. + +Inductive seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }. +Arguments unseal {_ _} _. +Arguments seal_eq {_ _} _. + +Record uPred : Type := IProp { uPred_holds :> Prop }. + +Definition uPred_or_def (P Q : uPred) : uPred := + {| uPred_holds := P \/ Q |}. +Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed. +Definition uPred_or := unseal uPred_or_aux. +Definition uPred_or_eq: @uPred_or = @uPred_or_def := seal_eq uPred_or_aux. + +Lemma foobar (P1 P2 Q : uPred) : + (P1 <-> P2) -> (uPred_or P1 Q) <-> (uPred_or P2 Q). +Proof. + rewrite uPred_or_eq. (* This fails. *) +Admitted. + +End T4. + + +Module DesignFlaw. + +Record foo A := Foo { foo_car : A }. +Definition bar : foo _ := Foo nat 10. + +Definition app (f : foo nat -> nat) x := f x. + +Goal app (foo_car _) bar = 10. +Proof. +unfold app. (* mkApp should produce a Proj *) +Fail set x := (foo_car _ _). +Admitted. + +End DesignFlaw. + + +Module Bug. + +Record foo A := Foo { foo_car : A }. + +Definition bar : foo _ := Foo nat 10. + +Variable alias : forall A, foo A -> A. + +Parameter e : @foo_car = alias. + +Goal foo_car _ bar = alias _ bar. +Proof. +Fail rewrite e. (* Issue: #86 *) +Admitted. + +End Bug. diff --git a/test-suite/ssr/rewpatterns.v b/test-suite/ssr/rewpatterns.v new file mode 100644 index 000000000..f7993f402 --- /dev/null +++ b/test-suite/ssr/rewpatterns.v @@ -0,0 +1,146 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + + +Require Import ssreflect. +Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp. + +Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1). +by move=> x y f; rewrite [_.+1](addnC x.+1). +Qed. + +Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y). +by move=> x y f; rewrite {2}[in f _]addnC. +Qed. + +Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)). +by move=> x y f; rewrite [in f _](addnC y). +Qed. + +Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y). +by move=> x y f; rewrite {1 3}[in f _](addnC y). +Qed. + +(* patterns catching bound vars not supported *) +Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)). +by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *) +Qed. + +Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x). +by move=> x y f; rewrite [in X in (f _ X)](addnC y). +Qed. + +Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x = + x + f (x + y) x + f (y + x) x. +by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. +Qed. + +Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x = + x + f (x + y) x + f (y + y) x. +by move=> x y f E; rewrite {2}[in X in (f X _)]E. +Qed. + +Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x = + x + f (fun _ => x + y) x + f (fun _ => y + x) x. +by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. +Qed. + +Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x = + x + f (fun _ _ _ => x + y) x. +by move=> x y f E; rewrite {2}[in X in (f X _)]E. +Qed. + +Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x = + x + f (x + y) x + f (y + x) x. +by move=> x y f E; rewrite {1}[X in (f X _)]addnC. +Qed. + +Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (x + y). +by move=> x y f E; rewrite {1}[in X in (f X X)]E. +Qed. + +Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (y + y). +by move=> x y f E; rewrite [in X in (f X X)]E. +Qed. + +Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (y + y). +by move=> x y f E; rewrite -[X in (f X X)]E. +Qed. + +Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x). +by move=> x y f; rewrite [(x + y) in X in (f X)]addnC. +Qed. + +Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1). +by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC. +Qed. + +Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0. +Proof. +rewrite [in f _]addSn. +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end. +rewrite -[X in _ = X]addn0. +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end. +rewrite -{2}[in X in _ = X](addn0 0). +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end. +rewrite [_.+1 in X in f _ X](addnC x.+1). +match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. +rewrite [x.+1 + y as X in f X _]addnC. +match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. +Admitted. + +Goal (exists x : 'I_3, x > 0). +apply: (ex_intro _ (@Ordinal _ 2 _)). +Admitted. + +Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0). +move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)). + by apply: leq_trans y_lt2 _. +by move=> y_lt3; apply: leq_trans _ y_gt1. +Qed. + +Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True). +move=> x y P E. +have: P x -> P y by suff: x = y by move=> ?; congr (P _). +Admitted. + +Goal forall a : bool, a -> true && a || false && a. +by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=. +Qed. + +Goal forall a : bool, a -> true && a || false && a. +by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=. +Qed. + +Variable a : bool. +Definition f x := x || a. +Definition g x := f x. + +Goal a -> g false. +by move=> Ha; rewrite [g _]/f orbC Ha. +Qed. + +Goal a -> g false || g false. +move=> Ha; rewrite {2}[g _]/f orbC Ha. +match goal with |- (is_true (false || true || g false)) => done end. +Qed. + +Goal a -> (a && a || true && a) && true. +by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f. +Qed. + +Goal a -> (a || a) && true. +by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f. +Qed. diff --git a/test-suite/ssr/set_lamda.v b/test-suite/ssr/set_lamda.v new file mode 100644 index 000000000..a012ec680 --- /dev/null +++ b/test-suite/ssr/set_lamda.v @@ -0,0 +1,27 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool ssrfun. +Require Import TestSuite.ssr_mini_mathcomp. + +Set Implicit Arguments. +Unset Strict Implicit. +Import Prenex Implicits. + +(* error 2 *) + +Goal (exists f: Set -> nat, f nat = 0). +Proof. set (f:= fun _:Set =>0). by exists f. Qed. + +Goal (exists f: Set -> nat, f nat = 0). +Proof. set f := (fun _:Set =>0). by exists f. Qed. diff --git a/test-suite/ssr/set_pattern.v b/test-suite/ssr/set_pattern.v new file mode 100644 index 000000000..3ce75e879 --- /dev/null +++ b/test-suite/ssr/set_pattern.v @@ -0,0 +1,64 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + +Axiom daemon : False. Ltac myadmit := case: daemon. + +Ltac T1 x := match goal with |- _ => set t := (x in X in _ = X) end. +Ltac T2 x := first [set t := (x in RHS)]. +Ltac T3 x := first [set t := (x in Y in _ = Y)|idtac]. +Ltac T4 x := set t := (x in RHS); idtac. +Ltac T5 x := match goal with |- _ => set t := (x in RHS) | |- _ => idtac end. + +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Open Scope nat_scope. + +Lemma foo x y : x.+1 = y + x.+1. +set t := (_.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end. +set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. +set t := (x in _ = x). match goal with |- x.+1 = t => rewrite /t {t} end. +set t := (x in X in _ = X). + match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. +set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. +set t := (y + (1 + x) as X in _ = X). + match goal with |- x.+1 = t => rewrite /t addSn add0n {t} end. +set t := x.+1. match goal with |- t = y + t => rewrite /t {t} end. +set t := (x).+1. match goal with |- t = y + t => rewrite /t {t} end. +set t := ((x).+1 in X in _ = X). + match goal with |- x.+1 = y + t => rewrite /t {t} end. +set t := (x.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end. +T1 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. +T2 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. +T3 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. +T4 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. +T5 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. +rewrite [RHS]addnC. + match goal with |- x.+1 = x.+1 + y => rewrite -[RHS]addnC end. +rewrite -[in RHS](@subnK 1 x.+1) //. + match goal with |- x.+1 = y + (x.+1 - 1 + 1) => rewrite subnK // end. +have H : x.+1 = y by myadmit. +set t := _.+1 in H |- *. + match goal with H : t = y |- t = y + t => rewrite /t {t} in H * end. +set t := (_.+1 in X in _ + X) in H |- *. + match goal with H : x.+1 = y |- x.+1 = y + t => rewrite /t {t} in H * end. +set t := 0. match goal with t := 0 |- x.+1 = y + x.+1 => clear t end. +set t := y + _. match goal with |- x.+1 = t => rewrite /t {t} end. +set t : nat := 0. clear t. +set t : nat := (x in RHS). + match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. +set t : nat := RHS. match goal with |- x.+1 = t => rewrite /t {t} end. +(* set t := 0 + _. *) +(* set t := (x).+1 in X in _ + X in H |-. *) +(* set t := (x).+1 in X in _ = X.*) +Admitted. diff --git a/test-suite/ssr/ssrsyntax2.v b/test-suite/ssr/ssrsyntax2.v new file mode 100644 index 000000000..af839fabd --- /dev/null +++ b/test-suite/ssr/ssrsyntax2.v @@ -0,0 +1,20 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import TestSuite.ssr_ssrsyntax1. +Require Import Arith. + +Goal (forall a b, a + b = b + a). +intros. +rewrite plus_comm, plus_comm. +split. +Qed. diff --git a/test-suite/ssr/tc.v b/test-suite/ssr/tc.v new file mode 100644 index 000000000..ae4589ef3 --- /dev/null +++ b/test-suite/ssr/tc.v @@ -0,0 +1,39 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + + +Class foo (A : Type) : Type := mkFoo { val : A }. +Instance foo_pair {A B} {f1 : foo A} {f2 : foo B} : foo (A * B) | 2 := + {| val := (@val _ f1, @val _ f2) |}. +Instance foo_nat : foo nat | 3 := {| val := 0 |}. + +Definition id {A} (x : A) := x. +Axiom E : forall A {f : foo A} (a : A), id a = (@val _ f). + +Lemma test (x : nat) : id true = true -> id x = 0. +Proof. +Fail move=> _; reflexivity. +Timeout 2 rewrite E => _; reflexivity. +Qed. + +Definition P {A} (x : A) : Prop := x = x. +Axiom V : forall A {f : foo A} (x:A), P x -> P (id x). + +Lemma test1 (x : nat) : P x -> P (id x). +Proof. +move=> px. +Timeout 2 Fail move/V: px. +Timeout 2 move/V : (px) => _. +move/(V nat) : px => H; exact H. +Qed. diff --git a/test-suite/ssr/typeof.v b/test-suite/ssr/typeof.v new file mode 100644 index 000000000..ca121fdb3 --- /dev/null +++ b/test-suite/ssr/typeof.v @@ -0,0 +1,22 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. + +Ltac mycut x := + let tx := type of x in + cut tx. + +Lemma test : True. +Proof. +by mycut I=> [ x | ]; [ exact x | exact I ]. +Qed. diff --git a/test-suite/ssr/unfold_Opaque.v b/test-suite/ssr/unfold_Opaque.v new file mode 100644 index 000000000..7c2b51de4 --- /dev/null +++ b/test-suite/ssr/unfold_Opaque.v @@ -0,0 +1,18 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +Require Import ssreflect. + +Definition x := 3. +Opaque x. + +Goal x = 3. +Fail rewrite /x. +Admitted. diff --git a/test-suite/ssr/unkeyed.v b/test-suite/ssr/unkeyed.v new file mode 100644 index 000000000..710941c30 --- /dev/null +++ b/test-suite/ssr/unkeyed.v @@ -0,0 +1,31 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp. + +Set Implicit Arguments. +Unset Strict Implicit. +Import Prenex Implicits. + +Lemma test0 (a b : unit) f : a = f b. +Proof. by rewrite !unitE. Qed. + +Lemma phE T : all_equal_to (Phant T). Proof. by case. Qed. + +Lemma test1 (a b : phant nat) f : a = f b. +Proof. by rewrite !phE. Qed. + +Lemma eq_phE (T : eqType) : all_equal_to (Phant T). Proof. by case. Qed. + +Lemma test2 (a b : phant bool) f : a = locked (f b). +Proof. by rewrite !eq_phE. Qed. diff --git a/test-suite/ssr/view_case.v b/test-suite/ssr/view_case.v new file mode 100644 index 000000000..2721470c4 --- /dev/null +++ b/test-suite/ssr/view_case.v @@ -0,0 +1,31 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool TestSuite.ssr_mini_mathcomp. + +Axiom P : forall T, seq T -> Prop. + +Goal (forall T (s : seq T), P _ s). +move=> T s. +elim: s => [| x /lastP [| s] IH]. +Admitted. + +Goal forall x : 'I_1, x = 0 :> nat. +move=> /ord1 -> /=; exact: refl_equal. +Qed. + +Goal forall x : 'I_1, x = 0 :> nat. +move=> x. +move=> /ord1 -> in x |- *. +exact: refl_equal. +Qed. diff --git a/test-suite/ssr/wlog_suff.v b/test-suite/ssr/wlog_suff.v new file mode 100644 index 000000000..43a8f3b8b --- /dev/null +++ b/test-suite/ssr/wlog_suff.v @@ -0,0 +1,28 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. + +Lemma test b : b || ~~b. +wlog _ : b / b = true. + case: b; [ by apply | by rewrite orbC ]. +wlog suff: b / b || ~~b. + by case: b. +by case: b. +Qed. + +Lemma test2 b c (H : c = b) : b || ~~b. +wlog _ : b {c H} / b = true. + by case: b H. +by case: b. +Qed. diff --git a/test-suite/ssr/wlogletin.v b/test-suite/ssr/wlogletin.v new file mode 100644 index 000000000..64e1ea84f --- /dev/null +++ b/test-suite/ssr/wlogletin.v @@ -0,0 +1,50 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. +Require Import TestSuite.ssr_mini_mathcomp. + +Variable T : Type. +Variables P : T -> Prop. + +Definition f := fun x y : T => x. + +Lemma test1 : forall x y : T, P (f x y) -> P x. +Proof. +move=> x y; set fxy := f x y; move=> Pfxy. +wlog H : @fxy Pfxy / P x. + match goal with |- (let fxy0 := f x y in P fxy0 -> P x -> P x) -> P x => by auto | _ => fail end. +exact: H. +Qed. + +Lemma test2 : forall x y : T, P (f x y) -> P x. +Proof. +move=> x y; set fxy := f x y; move=> Pfxy. +wlog H : fxy Pfxy / P x. + match goal with |- (forall fxy, P fxy -> P x -> P x) -> P x => by auto | _ => fail end. +exact: H. +Qed. + +Lemma test3 : forall x y : T, P (f x y) -> P x. +Proof. +move=> x y; set fxy := f x y; move=> Pfxy. +move: {1}@fxy (Pfxy) (Pfxy). +match goal with |- (let fxy0 := f x y in P fxy0 -> P fxy -> P x) => by auto | _ => fail end. +Qed. + +Lemma test4 : forall n m z: bool, n = z -> let x := n in x = m && n -> x = m && n. +move=> n m z E x H. +case: true. + by rewrite {1 2}E in (x) H |- *. +by rewrite {1}E in x H |- *. +Qed. diff --git a/test-suite/ssr/wlong_intro.v b/test-suite/ssr/wlong_intro.v new file mode 100644 index 000000000..dd80f0435 --- /dev/null +++ b/test-suite/ssr/wlong_intro.v @@ -0,0 +1,20 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + +Require Import ssreflect. +Require Import ssrbool. +Require Import TestSuite.ssr_mini_mathcomp. + +Goal (forall x y : nat, True). +move=> x y. +wlog suff: x y / x <= y. +Admitted. |