aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gaëtan Gilbert <gaetan.gilbert@ens-lyon.fr>2017-06-22 14:21:43 +0200
committerGravatar Gaëtan Gilbert <gaetan.gilbert@ens-lyon.fr>2017-08-01 19:28:11 +0200
commite18f0a289411047777efdfa362bba675b16bb5a3 (patch)
tree77a5a655d1dfa3a87ede6e7247bfd4215442b168
parentfc4c6c604db7bd6d973b02d29993daafeabc6f6c (diff)
Unbreak RecTutorial.v
The RecTutorial.tex still contains similarly broken Coq code, it just doesn't run it.
-rw-r--r--doc/RecTutorial/RecTutorial.v111
1 files changed, 55 insertions, 56 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
index 8cfeebc28..4b0ab3125 100644
--- a/doc/RecTutorial/RecTutorial.v
+++ b/doc/RecTutorial/RecTutorial.v
@@ -1,3 +1,5 @@
+Unset Automatic Introduction.
+
Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3).
@@ -69,13 +71,13 @@ Check (Prop::Set::nil).
Require Import Bvector.
-Print vector.
+Print Vector.t.
-Check (Vnil nat).
+Check (Vector.nil nat).
-Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)).
+Check (fun (A:Type)(a:A)=> Vector.cons _ a _ (Vector.nil _)).
-Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
+Check (Vector.cons _ 5 _ (Vector.cons _ 3 _ (Vector.nil _))).
Lemma eq_3_3 : 2 + 1 = 3.
Proof.
@@ -146,6 +148,7 @@ Proof.
intros; absurd (p < p); eauto with arith.
Qed.
+Require Extraction.
Extraction max.
@@ -300,8 +303,8 @@ Section Le_case_analysis.
(HS : forall m, n <= m -> Q (S m)).
Check (
match H in (_ <= q) return (Q q) with
- | le_n => H0
- | le_S m Hm => HS m Hm
+ | le_n _ => H0
+ | le_S _ m Hm => HS m Hm
end
).
@@ -317,16 +320,16 @@ Proof.
Qed.
Definition Vtail_total
- (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
-match v in (vector _ n0) return (vector A (pred n0)) with
-| Vnil => Vnil A
-| Vcons _ n0 v0 => v0
+ (A : Type) (n : nat) (v : Vector.t A n) : Vector.t A (pred n):=
+match v in (Vector.t _ n0) return (Vector.t A (pred n0)) with
+| Vector.nil _ => Vector.nil A
+| Vector.cons _ _ n0 v0 => v0
end.
-Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n).
+Definition Vtail' (A:Type)(n:nat)(v:Vector.t A n) : Vector.t A (pred n).
intros A n v; case v.
simpl.
- exact (Vnil A).
+ exact (Vector.nil A).
simpl.
auto.
Defined.
@@ -498,10 +501,8 @@ Inductive typ : Type :=
Definition typ_inject: typ.
split.
-exact typ.
+Fail exact typ.
(*
-Defined.
-
Error: Universe Inconsistency.
*)
Abort.
@@ -920,7 +921,6 @@ Defined.
Print minus_decrease.
-
Definition div_aux (x y:nat)(H: Acc lt x):nat.
fix 3.
intros.
@@ -969,40 +969,40 @@ let rec div_aux x y =
| Right -> div_aux (minus x y) y)
*)
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Type)(v:Vector.t A 0), v = Vector.nil A.
Proof.
intros A v;inversion v.
Abort.
(*
- Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> v = Vnil A.
+ Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:Vector.t A n),
+ n= 0 -> v = Vector.nil A.
Toplevel input, characters 40281-40287
-> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A.
+> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), n= 0 -> v = Vector.nil A.
> ^^^^^^
Error: In environment
A : Set
n : nat
-v : vector A n
+v : Vector.t A n
e : n = 0
-The term "Vnil A" has type "vector A 0" while it is expected to have type
- "vector A n"
+The term "Vector.nil A" has type "Vector.t A 0" while it is expected to have type
+ "Vector.t A n"
*)
Require Import JMeq.
(* On devrait changer Set en Type ? *)
-Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> JMeq v (Vnil A).
+Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:Vector.t A n),
+ n= 0 -> JMeq v (Vector.nil A).
Proof.
destruct v.
auto.
intro; discriminate.
Qed.
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Type)(v:Vector.t A 0), v = Vector.nil A.
Proof.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
@@ -1010,56 +1010,56 @@ Proof.
Qed.
-Implicit Arguments Vcons [A n].
-Implicit Arguments Vnil [A].
-Implicit Arguments Vhead [A n].
-Implicit Arguments Vtail [A n].
+Implicit Arguments Vector.cons [A n].
+Implicit Arguments Vector.nil [A].
+Implicit Arguments Vector.hd [A n].
+Implicit Arguments Vector.tl [A n].
-Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
+Definition Vid : forall (A : Type)(n:nat), Vector.t A n -> Vector.t A n.
Proof.
destruct n; intro v.
- exact Vnil.
- exact (Vcons (Vhead v) (Vtail v)).
+ exact Vector.nil.
+ exact (Vector.cons (Vector.hd v) (Vector.tl v)).
Defined.
-Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)).
+Eval simpl in (fun (A:Type)(v:Vector.t A 0) => (Vid _ _ v)).
-Eval simpl in (fun (A:Type)(v:vector A 0) => v).
+Eval simpl in (fun (A:Type)(v:Vector.t A 0) => v).
-Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
+Lemma Vid_eq : forall (n:nat) (A:Type)(v:Vector.t A n), v=(Vid _ n v).
Proof.
destruct v.
reflexivity.
reflexivity.
Defined.
-Theorem zero_nil : forall A (v:vector A 0), v = Vnil.
+Theorem zero_nil : forall A (v:Vector.t A 0), v = Vector.nil.
Proof.
intros.
- change (Vnil (A:=A)) with (Vid _ 0 v).
+ change (Vector.nil (A:=A)) with (Vid _ 0 v).
apply Vid_eq.
Defined.
Theorem decomp :
- forall (A : Type) (n : nat) (v : vector A (S n)),
- v = Vcons (Vhead v) (Vtail v).
+ forall (A : Type) (n : nat) (v : Vector.t A (S n)),
+ v = Vector.cons (Vector.hd v) (Vector.tl v).
Proof.
intros.
- change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
+ change (Vector.cons (Vector.hd v) (Vector.tl v)) with (Vid _ (S n) v).
apply Vid_eq.
Defined.
Definition vector_double_rect :
- forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
- P 0 Vnil Vnil ->
- (forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
- P (S n) (Vcons a v1) (Vcons b v2)) ->
- forall n (v1 v2 : vector A n), P n v1 v2.
+ forall (A:Type) (P: forall (n:nat),(Vector.t A n)->(Vector.t A n) -> Type),
+ P 0 Vector.nil Vector.nil ->
+ (forall n (v1 v2 : Vector.t A n) a b, P n v1 v2 ->
+ P (S n) (Vector.cons a v1) (Vector.cons b v2)) ->
+ forall n (v1 v2 : Vector.t A n), P n v1 v2.
induction n.
intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
auto.
@@ -1069,24 +1069,23 @@ Defined.
Require Import Bool.
-Definition bitwise_or n v1 v2 : vector bool n :=
- vector_double_rect bool (fun n v1 v2 => vector bool n)
- Vnil
- (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
-
+Definition bitwise_or n v1 v2 : Vector.t bool n :=
+ vector_double_rect bool (fun n v1 v2 => Vector.t bool n)
+ Vector.nil
+ (fun n v1 v2 a b r => Vector.cons (orb a b) r) n v1 v2.
-Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v}
+Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:Vector.t A p){struct v}
: option A :=
match n,v with
- _ , Vnil => None
- | 0 , Vcons b _ _ => Some b
- | S n', Vcons _ p' v' => vector_nth A n' p' v'
+ _ , Vector.nil => None
+ | 0 , Vector.cons b _ => Some b
+ | S n', @Vector.cons _ _ p' v' => vector_nth A n' p' v'
end.
Implicit Arguments vector_nth [A p].
-Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b,
+Lemma nth_bitwise : forall (n:nat) (v1 v2: Vector.t bool n) i a b,
vector_nth i v1 = Some a ->
vector_nth i v2 = Some b ->
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).