aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-01-22 14:07:19 +0000
committerGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-01-22 14:07:19 +0000
commitd9117de3db059a48e64eda154fa48cf16f8f83c8 (patch)
treeff50acf5ab5803dbf5b37c18a59052f6482bf8f1
parent62638f9e6dc361ce3ad72bfc1e700f4794729a19 (diff)
Renommages dans RList
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3580 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--theories/Reals/RList.v81
-rw-r--r--theories/Reals/RiemannInt.v32
-rw-r--r--theories/Reals/RiemannInt_SF.v144
3 files changed, 128 insertions, 129 deletions
diff --git a/theories/Reals/RList.v b/theories/Reals/RList.v
index 7f8a92d08..82c920621 100644
--- a/theories/Reals/RList.v
+++ b/theories/Reals/RList.v
@@ -20,15 +20,14 @@ Cases l of
| nil => False
| (cons a l') => ``x==a``\/(In x l') end.
-Fixpoint longueur [l:Rlist] : nat :=
+Fixpoint Rlength [l:Rlist] : nat :=
Cases l of
| nil => O
-| (cons a l') => (S (longueur l')) end.
+| (cons a l') => (S (Rlength l')) end.
-(* Cette fonction renvoie le maximum des éléments d'une liste non vide *)
Fixpoint MaxRlist [l:Rlist] : R :=
Cases l of
- | nil => R0 (* valeur de retour si la liste de départ est vide *)
+ | nil => R0
| (cons a l1) =>
Cases l1 of
| nil => a
@@ -38,7 +37,7 @@ end.
Fixpoint MinRlist [l:Rlist] : R :=
Cases l of
- | nil => R1 (* valeur de retour si la liste de départ est vide *)
+ | nil => R1
| (cons a l1) =>
Cases l1 of
| nil => a
@@ -142,11 +141,11 @@ Fixpoint pos_Rl [l:Rlist] : nat->R :=
end
end.
-Lemma pos_Rl_P1 : (l:Rlist;a:R) (lt O (longueur l)) -> (pos_Rl (cons a l) (longueur l))==(pos_Rl l (pred (longueur l))).
-Intros; Induction l; [Elim (lt_n_O ? H) | Simpl; Case (longueur l); [Reflexivity | Intro; Reflexivity]].
+Lemma pos_Rl_P1 : (l:Rlist;a:R) (lt O (Rlength l)) -> (pos_Rl (cons a l) (Rlength l))==(pos_Rl l (pred (Rlength l))).
+Intros; Induction l; [Elim (lt_n_O ? H) | Simpl; Case (Rlength l); [Reflexivity | Intro; Reflexivity]].
Qed.
-Lemma pos_Rl_P2 : (l:Rlist;x:R) (In x l)<->(EX i:nat | (lt i (longueur l))/\x==(pos_Rl l i)).
+Lemma pos_Rl_P2 : (l:Rlist;x:R) (In x l)<->(EX i:nat | (lt i (Rlength l))/\x==(pos_Rl l i)).
Intros; Induction l.
Split; Intro; [Elim H | Elim H; Intros; Elim H0; Intros; Elim (lt_n_O ? H1)].
Split; Intro.
@@ -160,7 +159,7 @@ Symmetry; Apply S_pred with O; Assumption.
Exists (pred x0); Split; [Simpl in H1; Apply lt_S_n; Rewrite H5; Assumption | Rewrite <- H5 in H2; Simpl in H2; Assumption].
Qed.
-Lemma Rlist_P1 : (l:Rlist;P:R->R->Prop) ((x:R)(In x l)->(EXT y:R | (P x y))) -> (EXT l':Rlist | (longueur l)=(longueur l')/\(i:nat) (lt i (longueur l))->(P (pos_Rl l i) (pos_Rl l' i))).
+Lemma Rlist_P1 : (l:Rlist;P:R->R->Prop) ((x:R)(In x l)->(EXT y:R | (P x y))) -> (EXT l':Rlist | (Rlength l)=(Rlength l')/\(i:nat) (lt i (Rlength l))->(P (pos_Rl l i) (pos_Rl l' i))).
Intros; Induction l.
Exists nil; Intros; Split; [Reflexivity | Intros; Simpl in H0; Elim (lt_n_O ? H0)].
Assert H0 : (In r (cons r l)).
@@ -176,7 +175,7 @@ Apply S_pred with O; Assumption.
Rewrite H8; Simpl; Apply H6; Simpl in H7; Apply lt_S_n; Rewrite <- H8; Assumption.
Qed.
-Definition ordered_Rlist [l:Rlist] : Prop := (i:nat) (lt i (pred (longueur l))) -> (Rle (pos_Rl l i) (pos_Rl l (S i))).
+Definition ordered_Rlist [l:Rlist] : Prop := (i:nat) (lt i (pred (Rlength l))) -> (Rle (pos_Rl l i) (pos_Rl l (S i))).
Fixpoint insert [l:Rlist] : R->Rlist :=
[x:R] Cases l of
@@ -232,12 +231,12 @@ Intros; Induction l.
Simpl; Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0).
Simpl; Case (total_order_Rle r a); Intro.
Assert H1 : (ordered_Rlist l).
-Unfold ordered_Rlist; Unfold ordered_Rlist in H; Intros; Assert H1 : (lt (S i) (pred (longueur (cons r l)))); [Simpl; Replace (longueur l) with (S (pred (longueur l))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Simpl in H0; Elim (lt_n_O ? H0)] | Apply (H ? H1)].
+Unfold ordered_Rlist; Unfold ordered_Rlist in H; Intros; Assert H1 : (lt (S i) (pred (Rlength (cons r l)))); [Simpl; Replace (Rlength l) with (S (pred (Rlength l))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Simpl in H0; Elim (lt_n_O ? H0)] | Apply (H ? H1)].
Assert H2 := (Hrecl H1); Unfold ordered_Rlist; Intros; Induction i.
Simpl; Assert H3 := (RList_P0 l a); Elim H3; Intro.
Rewrite H4; Assumption.
Induction l; [Simpl; Assumption | Rewrite H4; Apply (H O); Simpl; Apply lt_O_Sn].
-Simpl; Apply H2; Simpl in H0; Apply lt_S_n; Replace (S (pred (longueur (insert l a)))) with (longueur (insert l a)); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H0; Elim (lt_n_O ? H0)].
+Simpl; Apply H2; Simpl in H0; Apply lt_S_n; Replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a)); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H0; Elim (lt_n_O ? H0)].
Unfold ordered_Rlist; Intros; Induction i; [Simpl; Auto with real | Change ``(pos_Rl (cons r l) i)<=(pos_Rl (cons r l) (S i))``; Apply H; Simpl in H0; Simpl; Apply (lt_S_n ? ? H0)].
Qed.
@@ -245,7 +244,7 @@ Lemma RList_P2 : (l1,l2:Rlist) (ordered_Rlist l2) ->(ordered_Rlist (cons_ORlist
Induction l1; [Intros; Simpl; Apply H | Intros; Simpl; Apply H; Apply RList_P1; Assumption].
Qed.
-Lemma RList_P3 : (l:Rlist;x:R) (In x l) <-> (EX i:nat | x==(pos_Rl l i)/\(lt i (longueur l))).
+Lemma RList_P3 : (l:Rlist;x:R) (In x l) <-> (EX i:nat | x==(pos_Rl l i)/\(lt i (Rlength l))).
Intros; Split; Intro; Induction l.
Elim H.
Elim H; Intro; [Exists O; Split; [Apply H0 | Simpl; Apply lt_O_Sn] | Elim (Hrecl H0); Intros; Elim H1; Clear H1; Intros; Exists (S x0); Split; [Apply H1 | Simpl; Apply lt_n_S; Assumption]].
@@ -254,14 +253,14 @@ Simpl; Elim H; Intros; Elim H0; Clear H0; Intros; Induction x0; [Left; Apply H0
Qed.
Lemma RList_P4 : (l1:Rlist;a:R) (ordered_Rlist (cons a l1)) -> (ordered_Rlist l1).
-Intros; Unfold ordered_Rlist; Intros; Apply (H (S i)); Simpl; Replace (longueur l1) with (S (pred (longueur l1))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Elim (lt_n_O ? H0)].
+Intros; Unfold ordered_Rlist; Intros; Apply (H (S i)); Simpl; Replace (Rlength l1) with (S (pred (Rlength l1))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Elim (lt_n_O ? H0)].
Qed.
Lemma RList_P5 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``(pos_Rl l O)<=x``.
Intros; Induction l; [Elim H0 | Simpl; Elim H0; Intro; [Rewrite H1; Right; Reflexivity | Apply Rle_trans with (pos_Rl l O); [Apply (H O); Simpl; Induction l; [Elim H1 | Simpl; Apply lt_O_Sn] | Apply Hrecl; [EApply RList_P4; Apply H | Assumption]]]].
Qed.
-Lemma RList_P6 : (l:Rlist) (ordered_Rlist l)<->((i,j:nat)(le i j)->(lt j (longueur l))->``(pos_Rl l i)<=(pos_Rl l j)``).
+Lemma RList_P6 : (l:Rlist) (ordered_Rlist l)<->((i,j:nat)(le i j)->(lt j (Rlength l))->``(pos_Rl l i)<=(pos_Rl l j)``).
Induction l; Split; Intro.
Intros; Right; Reflexivity.
Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0).
@@ -269,8 +268,8 @@ Intros; Induction i; [Induction j; [Right; Reflexivity | Simpl; Apply Rle_trans
Unfold ordered_Rlist; Intros; Apply H0; [Apply le_n_Sn | Simpl; Simpl in H1; Apply lt_n_S; Assumption].
Qed.
-Lemma RList_P7 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``x<=(pos_Rl l (pred (longueur l)))``.
-Intros; Assert H1 := (RList_P6 l); Elim H1; Intros H2 _; Assert H3 := (H2 H); Clear H1 H2; Assert H1 := (RList_P3 l x); Elim H1; Clear H1; Intros; Assert H4 := (H1 H0); Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Rewrite H4; Assert H6 : (longueur l)=(S (pred (longueur l))).
+Lemma RList_P7 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``x<=(pos_Rl l (pred (Rlength l)))``.
+Intros; Assert H1 := (RList_P6 l); Elim H1; Intros H2 _; Assert H3 := (H2 H); Clear H1 H2; Assert H1 := (RList_P3 l x); Elim H1; Clear H1; Intros; Assert H4 := (H1 H0); Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Rewrite H4; Assert H6 : (Rlength l)=(S (pred (Rlength l))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H6 in H5; Elim (lt_n_O ? H5).
Apply H3; [Rewrite H6 in H5; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H7 in H5; Elim (lt_n_O ? H5)].
Qed.
@@ -289,19 +288,19 @@ Simpl; Intros; Elim (H (insert l2 r) x); Intros; Assert H3 := (H1 H0); Elim H3;
Intro; Simpl; Elim (H (insert l2 r) x); Intros _ H1; Apply H1; Elim H0; Intro; [Elim H2; Intro; [Right; Elim (RList_P8 l2 r x); Intros _ H4; Apply H4; Left; Assumption | Left; Assumption] | Right; Elim (RList_P8 l2 r x); Intros _ H3; Apply H3; Right; Assumption].
Qed.
-Lemma RList_P10 : (l:Rlist;a:R) (longueur (insert l a))==(S (longueur l)).
+Lemma RList_P10 : (l:Rlist;a:R) (Rlength (insert l a))==(S (Rlength l)).
Intros; Induction l; [Reflexivity | Simpl; Case (total_order_Rle r a); Intro; [Simpl; Rewrite Hrecl; Reflexivity | Reflexivity]].
Qed.
-Lemma RList_P11 : (l1,l2:Rlist) (longueur (cons_ORlist l1 l2))=(plus (longueur l1) (longueur l2)).
+Lemma RList_P11 : (l1,l2:Rlist) (Rlength (cons_ORlist l1 l2))=(plus (Rlength l1) (Rlength l2)).
Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite (H (insert l2 r)); Rewrite RList_P10; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring].
Qed.
-Lemma RList_P12 : (l:Rlist;i:nat;f:R->R) (lt i (longueur l)) -> (pos_Rl (app_Rlist l f) i)==(f (pos_Rl l i)).
+Lemma RList_P12 : (l:Rlist;i:nat;f:R->R) (lt i (Rlength l)) -> (pos_Rl (app_Rlist l f) i)==(f (pos_Rl l i)).
Induction l; [Intros; Elim (lt_n_O ? H) | Intros; Induction i; [Reflexivity | Simpl; Apply H; Apply lt_S_n; Apply H0]].
Qed.
-Lemma RList_P13 : (l:Rlist;i:nat;a:R) (lt i (pred (longueur l))) -> ``(pos_Rl (mid_Rlist l a) (S i)) == ((pos_Rl l i)+(pos_Rl l (S i)))/2``.
+Lemma RList_P13 : (l:Rlist;i:nat;a:R) (lt i (pred (Rlength l))) -> ``(pos_Rl (mid_Rlist l a) (S i)) == ((pos_Rl l i)+(pos_Rl l (S i)))/2``.
Induction l.
Intros; Simpl in H; Elim (lt_n_O ? H).
Induction r0.
@@ -311,7 +310,7 @@ Reflexivity.
Change ``(pos_Rl (mid_Rlist (cons r1 r2) r) (S i)) == ((pos_Rl (cons r1 r2) i)+(pos_Rl (cons r1 r2) (S i)))/2``; Apply H0; Simpl; Apply lt_S_n; Assumption.
Qed.
-Lemma RList_P14 : (l:Rlist;a:R) (longueur (mid_Rlist l a))=(longueur l).
+Lemma RList_P14 : (l:Rlist;a:R) (Rlength (mid_Rlist l a))=(Rlength l).
Induction l; Intros; [Reflexivity | Simpl; Rewrite (H r); Reflexivity].
Qed.
@@ -321,27 +320,27 @@ Induction l1; [Simpl; Simpl in H1; Right; Symmetry; Assumption | Elim (RList_P9
Induction l1; [Simpl; Simpl in H1; Right; Assumption | Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (0)) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Apply H3; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P5; Assumption | Rewrite H1; Apply RList_P5; Assumption]]].
Qed.
-Lemma RList_P16 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 (pred (longueur l1)))==(pos_Rl l2 (pred (longueur l2))) -> (pos_Rl (cons_ORlist l1 l2) (pred (longueur (cons_ORlist l1 l2))))==(pos_Rl l1 (pred (longueur l1))).
+Lemma RList_P16 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 (pred (Rlength l2))) -> (pos_Rl (cons_ORlist l1 l2) (pred (Rlength (cons_ORlist l1 l2))))==(pos_Rl l1 (pred (Rlength l1))).
Intros; Apply Rle_antisym.
Induction l1.
Simpl; Simpl in H1; Right; Symmetry; Assumption.
-Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (pred (longueur (cons_ORlist (cons r l1) l2)))) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (pred (longueur (cons_ORlist (cons r l1) l2))))); Intros; Apply H3; Exists (pred (longueur (cons_ORlist (cons r l1) l2))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (pred (longueur (cons_ORlist (cons r l1) l2))))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P7; Assumption | Rewrite H1; Apply RList_P7; Assumption]].
+Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2)))) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Apply H3; Exists (pred (Rlength (cons_ORlist (cons r l1) l2))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P7; Assumption | Rewrite H1; Apply RList_P7; Assumption]].
Induction l1.
Simpl; Simpl in H1; Right; Assumption.
-Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (longueur (cons r l1))))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (pred (longueur (cons r l1)))) (cons r l1))\/(In (pos_Rl (cons r l1) (pred (longueur (cons r l1)))) l2); [Left; Change (In (pos_Rl (cons r l1) (longueur l1)) (cons r l1)); Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (longueur l1))); Intros; Apply H5; Exists (longueur l1); Split; [Reflexivity | Simpl; Apply lt_n_Sn] | Assert H5 := (H3 H4); Apply RList_P7; [Apply RList_P2; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (longueur (cons r l1))))); Intros; Apply H7; Left; Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (pred (longueur (cons r l1))))); Intros; Apply H9; Exists (pred (longueur (cons r l1))); Split; [Reflexivity | Simpl; Apply lt_n_Sn]]].
+Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1))\/(In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2); [Left; Change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)); Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1))); Intros; Apply H5; Exists (Rlength l1); Split; [Reflexivity | Simpl; Apply lt_n_Sn] | Assert H5 := (H3 H4); Apply RList_P7; [Apply RList_P2; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H7; Left; Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H9; Exists (pred (Rlength (cons r l1))); Split; [Reflexivity | Simpl; Apply lt_n_Sn]]].
Qed.
-Lemma RList_P17 : (l1:Rlist;x:R;i:nat) (ordered_Rlist l1) -> (In x l1) -> ``(pos_Rl l1 i)<x`` -> (lt i (pred (longueur l1))) -> ``(pos_Rl l1 (S i))<=x``.
+Lemma RList_P17 : (l1:Rlist;x:R;i:nat) (ordered_Rlist l1) -> (In x l1) -> ``(pos_Rl l1 i)<x`` -> (lt i (pred (Rlength l1))) -> ``(pos_Rl l1 (S i))<=x``.
Induction l1.
Intros; Elim H0.
Intros; Induction i.
Simpl; Elim H1; Intro; [Simpl in H2; Rewrite H4 in H2; Elim (Rlt_antirefl ? H2) | Apply RList_P5; [Apply RList_P4 with r; Assumption | Assumption]].
Simpl; Simpl in H2; Elim H1; Intro.
-Rewrite H4 in H2; Assert H5 : ``r<=(pos_Rl r0 i)``; [Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H3; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3) | Elim (RList_P6 r0); Intros; Apply H5; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H3; Apply lt_S_n; Apply lt_trans with (longueur r0); [Apply H3 | Apply lt_n_Sn]]] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H2))].
-Apply H; Try Assumption; [Apply RList_P4 with r; Assumption | Simpl in H3; Apply lt_S_n; Replace (S (pred (longueur r0))) with (longueur r0); [Apply H3 | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3)]].
+Rewrite H4 in H2; Assert H5 : ``r<=(pos_Rl r0 i)``; [Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H3; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3) | Elim (RList_P6 r0); Intros; Apply H5; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H3; Apply lt_S_n; Apply lt_trans with (Rlength r0); [Apply H3 | Apply lt_n_Sn]]] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H2))].
+Apply H; Try Assumption; [Apply RList_P4 with r; Assumption | Simpl in H3; Apply lt_S_n; Replace (S (pred (Rlength r0))) with (Rlength r0); [Apply H3 | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3)]].
Qed.
-Lemma RList_P18 : (l:Rlist;f:R->R) (longueur (app_Rlist l f))=(longueur l).
+Lemma RList_P18 : (l:Rlist;f:R->R) (Rlength (app_Rlist l f))=(Rlength l).
Induction l; Intros; [Reflexivity | Simpl; Rewrite H; Reflexivity].
Qed.
@@ -349,7 +348,7 @@ Lemma RList_P19 : (l:Rlist) ~l==nil -> (EXT r:R | (EXT r0:Rlist | l==(cons r r0)
Intros; Induction l; [Elim H; Reflexivity | Exists r; Exists l; Reflexivity].
Qed.
-Lemma RList_P20 : (l:Rlist) (le (2) (longueur l)) -> (EXT r:R | (EXT r1:R | (EXT l':Rlist | l==(cons r (cons r1 l'))))).
+Lemma RList_P20 : (l:Rlist) (le (2) (Rlength l)) -> (EXT r:R | (EXT r1:R | (EXT l':Rlist | l==(cons r (cons r1 l'))))).
Intros; Induction l; [Simpl in H; Elim (le_Sn_O ? H) | Induction l; [Simpl in H; Elim (le_Sn_O ? (le_S_n ? ? H)) | Exists r; Exists r0; Exists l; Reflexivity]].
Qed.
@@ -361,26 +360,26 @@ Lemma RList_P22 : (l1,l2:Rlist) ~l1==nil -> (pos_Rl (cons_Rlist l1 l2) O)==(pos_
Induction l1; [Intros; Elim H; Reflexivity | Intros; Reflexivity].
Qed.
-Lemma RList_P23 : (l1,l2:Rlist) (longueur (cons_Rlist l1 l2))==(plus (longueur l1) (longueur l2)).
+Lemma RList_P23 : (l1,l2:Rlist) (Rlength (cons_Rlist l1 l2))==(plus (Rlength l1) (Rlength l2)).
Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite H; Reflexivity].
Qed.
-Lemma RList_P24 : (l1,l2:Rlist) ~l2==nil -> (pos_Rl (cons_Rlist l1 l2) (pred (longueur (cons_Rlist l1 l2)))) == (pos_Rl l2 (pred (longueur l2))).
+Lemma RList_P24 : (l1,l2:Rlist) ~l2==nil -> (pos_Rl (cons_Rlist l1 l2) (pred (Rlength (cons_Rlist l1 l2)))) == (pos_Rl l2 (pred (Rlength l2))).
Induction l1.
Intros; Reflexivity.
Intros; Rewrite <- (H l2 H0); Induction l2.
Elim H0; Reflexivity.
-Do 2 Rewrite RList_P23; Replace (plus (longueur (cons r r0)) (longueur (cons r1 l2))) with (S (S (plus (longueur r0) (longueur l2)))); [Replace (plus (longueur r0) (longueur (cons r1 l2))) with (S (plus (longueur r0) (longueur l2))); [Reflexivity | Simpl; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring] | Simpl; Apply INR_eq; Do 3 Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring].
+Do 2 Rewrite RList_P23; Replace (plus (Rlength (cons r r0)) (Rlength (cons r1 l2))) with (S (S (plus (Rlength r0) (Rlength l2)))); [Replace (plus (Rlength r0) (Rlength (cons r1 l2))) with (S (plus (Rlength r0) (Rlength l2))); [Reflexivity | Simpl; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring] | Simpl; Apply INR_eq; Do 3 Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring].
Qed.
-Lemma RList_P25 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> ``(pos_Rl l1 (pred (longueur l1)))<=(pos_Rl l2 O)`` -> (ordered_Rlist (cons_Rlist l1 l2)).
+Lemma RList_P25 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> ``(pos_Rl l1 (pred (Rlength l1)))<=(pos_Rl l2 O)`` -> (ordered_Rlist (cons_Rlist l1 l2)).
Induction l1.
Intros; Simpl; Assumption.
Induction r0.
Intros; Simpl; Simpl in H2; Unfold ordered_Rlist; Intros; Simpl in H3.
Induction i.
Simpl; Assumption.
-Change ``(pos_Rl l2 i)<=(pos_Rl l2 (S i))``; Apply (H1 i); Apply lt_S_n; Replace (S (pred (longueur l2))) with (longueur l2); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H4 in H3; Elim (lt_n_O ? H3)].
+Change ``(pos_Rl l2 i)<=(pos_Rl l2 (S i))``; Apply (H1 i); Apply lt_S_n; Replace (S (pred (Rlength l2))) with (Rlength l2); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H4 in H3; Elim (lt_n_O ? H3)].
Intros; Clear H; Assert H : (ordered_Rlist (cons_Rlist (cons r1 r2) l2)).
Apply H0; Try Assumption.
Apply RList_P4 with r; Assumption.
@@ -389,7 +388,7 @@ Simpl; Apply (H1 O); Simpl; Apply lt_O_Sn.
Change ``(pos_Rl (cons_Rlist (cons r1 r2) l2) i)<=(pos_Rl (cons_Rlist (cons r1 r2) l2) (S i))``; Apply (H i); Simpl; Apply lt_S_n; Assumption.
Qed.
-Lemma RList_P26 : (l1,l2:Rlist;i:nat) (lt i (longueur l1)) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l1 i).
+Lemma RList_P26 : (l1,l2:Rlist;i:nat) (lt i (Rlength l1)) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l1 i).
Induction l1.
Intros; Elim (lt_n_O ? H).
Intros; Induction i.
@@ -405,7 +404,7 @@ Lemma RList_P28 : (l:Rlist) (cons_Rlist l nil)==l.
Induction l; [Reflexivity | Intros; Simpl; Rewrite H; Reflexivity].
Qed.
-Lemma RList_P29 : (l2,l1:Rlist;i:nat) (le (longueur l1) i) -> (lt i (longueur (cons_Rlist l1 l2))) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l2 (minus i (longueur l1))).
+Lemma RList_P29 : (l2,l1:Rlist;i:nat) (le (Rlength l1) i) -> (lt i (Rlength (cons_Rlist l1 l2))) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l2 (minus i (Rlength l1))).
Induction l2.
Intros; Rewrite RList_P28 in H0; Elim (lt_n_n ? (le_lt_trans ? ? ? H H0)).
Intros; Replace (cons_Rlist l1 (cons r r0)) with (cons_Rlist (cons_Rlist l1 (cons r nil)) r0).
@@ -415,12 +414,12 @@ Clear l2 r0 H i H0 H1 H2; Induction l1.
Reflexivity.
Simpl; Assumption.
Rewrite RList_P23; Rewrite plus_sym; Simpl; Apply lt_n_Sn.
-Replace (minus (S m) (longueur l1)) with (S (minus (S m) (S (longueur l1)))).
-Rewrite H3; Simpl; Replace (S (longueur l1)) with (longueur (cons_Rlist l1 (cons r nil))).
+Replace (minus (S m) (Rlength l1)) with (S (minus (S m) (S (Rlength l1)))).
+Rewrite H3; Simpl; Replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))).
Apply (H (cons_Rlist l1 (cons r nil)) i).
Rewrite RList_P23; Rewrite plus_sym; Simpl; Rewrite <- H3; Apply le_n_S; Assumption.
-Repeat Rewrite RList_P23; Simpl; Rewrite RList_P23 in H1; Rewrite plus_sym in H1; Simpl in H1; Rewrite (plus_sym (longueur l1)); Simpl; Rewrite plus_sym; Apply H1.
+Repeat Rewrite RList_P23; Simpl; Rewrite RList_P23 in H1; Rewrite plus_sym in H1; Simpl in H1; Rewrite (plus_sym (Rlength l1)); Simpl; Rewrite plus_sym; Apply H1.
Rewrite RList_P23; Rewrite plus_sym; Reflexivity.
-Change (S (minus m (longueur l1)))=(minus (S m) (longueur l1)); Apply minus_Sn_m; Assumption.
+Change (S (minus m (Rlength l1)))=(minus (S m) (Rlength l1)); Apply minus_Sn_m; Assumption.
Replace (cons r r0) with (cons_Rlist (cons r nil) r0); [Symmetry; Apply RList_P27 | Reflexivity].
Qed.
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 8a4379a83..116cc2e6f 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -255,11 +255,11 @@ Lemma SubEqui_P1 : (a,b:R;del:posreal;h:``a<b``) (pos_Rl (SubEqui del h) O)==a.
Intros; Unfold SubEqui; Case (maxN del h); Intros; Reflexivity.
Qed.
-Lemma SubEqui_P2 : (a,b:R;del:posreal;h:``a<b``) (pos_Rl (SubEqui del h) (pred (longueur (SubEqui del h))))==b.
-Intros; Unfold SubEqui; Case (maxN del h); Intros; Clear a0; Cut (x:nat)(a:R)(del:posreal)(pos_Rl (SubEquiN (S x) a b del) (pred (longueur (SubEquiN (S x) a b del)))) == b; [Intro; Apply H | Induction x0; [Intros; Reflexivity | Intros; Change (pos_Rl (SubEquiN (S n) ``a0+del0`` b del0) (pred (longueur (SubEquiN (S n) ``a0+del0`` b del0))))==b; Apply H]].
+Lemma SubEqui_P2 : (a,b:R;del:posreal;h:``a<b``) (pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))))==b.
+Intros; Unfold SubEqui; Case (maxN del h); Intros; Clear a0; Cut (x:nat)(a:R)(del:posreal)(pos_Rl (SubEquiN (S x) a b del) (pred (Rlength (SubEquiN (S x) a b del)))) == b; [Intro; Apply H | Induction x0; [Intros; Reflexivity | Intros; Change (pos_Rl (SubEquiN (S n) ``a0+del0`` b del0) (pred (Rlength (SubEquiN (S n) ``a0+del0`` b del0))))==b; Apply H]].
Qed.
-Lemma SubEqui_P3 : (N:nat;a,b:R;del:posreal) (longueur (SubEquiN N a b del))=(S N).
+Lemma SubEqui_P3 : (N:nat;a,b:R;del:posreal) (Rlength (SubEquiN N a b del))=(S N).
Induction N; Intros; [Reflexivity | Simpl; Rewrite H; Reflexivity].
Qed.
@@ -267,7 +267,7 @@ Lemma SubEqui_P4 : (N:nat;a,b:R;del:posreal;i:nat) (lt i (S N)) -> (pos_Rl (SubE
Induction N; [Intros; Inversion H; [Simpl; Ring | Elim (le_Sn_O ? H1)] | Intros; Induction i; [Simpl; Ring | Change (pos_Rl (SubEquiN (S n) ``a+del`` b del) i)==``a+(INR (S i))*del``; Rewrite H; [Rewrite S_INR; Ring | Apply lt_S_n; Apply H0]]].
Qed.
-Lemma SubEqui_P5 : (a,b:R;del:posreal;h:``a<b``) (longueur (SubEqui del h))=(S (S (max_N del h))).
+Lemma SubEqui_P5 : (a,b:R;del:posreal;h:``a<b``) (Rlength (SubEqui del h))=(S (S (max_N del h))).
Intros; Unfold SubEqui; Apply SubEqui_P3.
Qed.
@@ -278,7 +278,7 @@ Qed.
Lemma SubEqui_P7 : (a,b:R;del:posreal;h:``a<b``) (ordered_Rlist (SubEqui del h)).
Intros; Unfold ordered_Rlist; Intros; Rewrite SubEqui_P5 in H; Simpl in H; Inversion H.
Rewrite (SubEqui_P6 3!del 4!h 5!(max_N del h)).
-Replace (S (max_N del h)) with (pred (longueur (SubEqui del h))).
+Replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
Rewrite SubEqui_P2; Unfold max_N; Case (maxN del h); Intros; Left; Elim a0; Intros; Assumption.
Rewrite SubEqui_P5; Reflexivity.
Apply lt_n_Sn.
@@ -288,7 +288,7 @@ Repeat Rewrite SubEqui_P6.
Apply Rle_compatibility; Rewrite S_INR; Rewrite Rmult_Rplus_distrl; Pattern 1 ``(INR i)*del``; Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite Rmult_1l; Left; Apply (cond_pos del).
Qed.
-Lemma SubEqui_P8 : (a,b:R;del:posreal;h:``a<b``;i:nat) (lt i (longueur (SubEqui del h))) -> ``a<=(pos_Rl (SubEqui del h) i)<=b``.
+Lemma SubEqui_P8 : (a,b:R;del:posreal;h:``a<b``;i:nat) (lt i (Rlength (SubEqui del h))) -> ``a<=(pos_Rl (SubEqui del h) i)<=b``.
Intros; Split.
Pattern 1 a; Rewrite <- (SubEqui_P1 del h); Apply RList_P5.
Apply SubEqui_P7.
@@ -296,7 +296,7 @@ Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Ex
Pattern 2 b; Rewrite <- (SubEqui_P2 del h); Apply RList_P7; [Apply SubEqui_P7 | Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Exists i; Split; [Reflexivity | Assumption]].
Qed.
-Lemma SubEqui_P9 : (a,b:R;del:posreal;f:R->R;h:``a<b``) (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (longueur (SubEqui del h))))->(constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))).
+Lemma SubEqui_P9 : (a,b:R;del:posreal;f:R->R;h:``a<b``) (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (Rlength (SubEqui del h))))->(constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))).
Intros; Apply StepFun_P38; [Apply SubEqui_P7 | Apply SubEqui_P1 | Apply SubEqui_P2].
Qed.
@@ -322,19 +322,19 @@ Elim (Heine_cor2 H0 (mkposreal ? H1)); Intros del H4; Elim (SubEqui_P9 del f H);
2:Apply Rminus_eq_contra; Red; Intro; Clear H6; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
2:DiscrR.
2:Apply Rminus_eq_contra; Red; Intro; Clear H6; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
-Intros; Rewrite H2 in H7; Rewrite H3 in H7; Simpl; Unfold fct_cte; Cut (t:R)``a<=t<=b``->t==b\/(EX i:nat | (lt i (pred (longueur (SubEqui del H))))/\(co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t)).
+Intros; Rewrite H2 in H7; Rewrite H3 in H7; Simpl; Unfold fct_cte; Cut (t:R)``a<=t<=b``->t==b\/(EX i:nat | (lt i (pred (Rlength (SubEqui del H))))/\(co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t)).
Intro; Elim (H8 ? H7); Intro.
Rewrite H9; Rewrite H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H9; Clear H9; Intros I [H9 H10]; Assert H11 := (H6 I H9 t H10); Rewrite H11; Left; Apply H4.
Assumption.
-Apply SubEqui_P8; Apply lt_trans with (pred (longueur (SubEqui del H))).
+Apply SubEqui_P8; Apply lt_trans with (pred (Rlength (SubEqui del H))).
Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H9; Elim (lt_n_O ? H9).
Unfold co_interval in H10; Elim H10; Clear H10; Intros; Rewrite Rabsolu_right.
Rewrite SubEqui_P5 in H9; Simpl in H9; Inversion H9.
Apply Rlt_anti_compatibility with (pos_Rl (SubEqui del H) (max_N del H)).
Replace ``(pos_Rl (SubEqui del H) (max_N del H))+(t-(pos_Rl (SubEqui del H) (max_N del H)))`` with t; [Idtac | Ring]; Apply Rlt_le_trans with b.
-Rewrite H14 in H12; Assert H13 : (S (max_N del H))=(pred (longueur (SubEqui del H))).
+Rewrite H14 in H12; Assert H13 : (S (max_N del H))=(pred (Rlength (SubEqui del H))).
Rewrite SubEqui_P5; Reflexivity.
Rewrite H13 in H12; Rewrite SubEqui_P2 in H12; Apply H12.
Rewrite SubEqui_P6.
@@ -369,7 +369,7 @@ Rewrite SubEqui_P6.
Apply H5.
Assumption.
Inversion H7.
-Replace (S (max_N del H)) with (pred (longueur (SubEqui del H))).
+Replace (S (max_N del H)) with (pred (Rlength (SubEqui del H))).
Rewrite (SubEqui_P2 del H); Elim H8; Intros.
Elim H11; Intro.
Assumption.
@@ -784,7 +784,7 @@ Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l); Intros; Apply H10.
Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur l)); [Assumption | Apply lt_pred_n_n].
+Apply lt_trans with (pred (Rlength l)); [Assumption | Apply lt_pred_n_n].
Apply neq_O_lt; Intro; Rewrite <- H12 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H11 : ``(pos_Rl l (S i))<=b``.
@@ -901,7 +901,7 @@ Apply Rle_lt_trans with (pos_Rl l1 i).
Replace b with (Rmin b c).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate.
+Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Assumption].
Elim H7; Intros; Assumption.
Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H10)) | Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
@@ -918,7 +918,7 @@ Apply Rle_trans with (pos_Rl l1 i).
Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H11; Try Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate.
+Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Left; Elim H7; Intros; Assumption.
Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Reflexivity Orelse Elim n; Assumption.
@@ -936,7 +936,7 @@ Apply Rle_trans with (pos_Rl l1 i).
Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H11; Try Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate.
+Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Left; Elim H7; Intros; Assumption.
Unfold phi3; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Reflexivity Orelse Elim n; Assumption.
@@ -946,7 +946,7 @@ Apply Rle_lt_trans with (pos_Rl l1 i).
Replace b with (Rmin b c).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate.
+Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Assumption].
Elim H7; Intros; Assumption.
Unfold phi3; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H10)) | Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index a6c1c7a08..ab0283899 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -69,9 +69,9 @@ Qed.
Definition open_interval [a,b:R] : R->Prop := [x:R]``a<x<b``.
Definition co_interval [a,b:R] : R->Prop := [x:R]``a<=x<b``.
-Definition adapted_couple [f:R->R;a,b:R;l,lf:Rlist] : Prop := (ordered_Rlist l)/\``(pos_Rl l O)==(Rmin a b)``/\``(pos_Rl l (pred (longueur l)))==(Rmax a b)``/\(longueur l)=(S (longueur lf))/\(i:nat)(lt i (pred (longueur l)))->(constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)).
+Definition adapted_couple [f:R->R;a,b:R;l,lf:Rlist] : Prop := (ordered_Rlist l)/\``(pos_Rl l O)==(Rmin a b)``/\``(pos_Rl l (pred (Rlength l)))==(Rmax a b)``/\(Rlength l)=(S (Rlength lf))/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)).
-Definition adapted_couple_opt [f:R->R;a,b:R;l,lf:Rlist] := (adapted_couple f a b l lf)/\((i:nat)(lt i (pred (longueur lf)))->(``(pos_Rl lf i)<>(pos_Rl lf (S i))``\/``(f (pos_Rl l (S i)))<>(pos_Rl lf i)``))/\((i:nat)(lt i (pred (longueur l)))->``(pos_Rl l i)<>(pos_Rl l (S i))``).
+Definition adapted_couple_opt [f:R->R;a,b:R;l,lf:Rlist] := (adapted_couple f a b l lf)/\((i:nat)(lt i (pred (Rlength lf)))->(``(pos_Rl lf i)<>(pos_Rl lf (S i))``\/``(f (pos_Rl l (S i)))<>(pos_Rl lf i)``))/\((i:nat)(lt i (pred (Rlength l)))->``(pos_Rl l i)<>(pos_Rl l (S i))``).
Definition is_subdivision [f:R->R;a,b:R;l:Rlist] : Type := (sigTT ? [l0:Rlist](adapted_couple f a b l l0)).
@@ -159,7 +159,7 @@ Apply RList_P4 with r1; Assumption.
Rewrite H5 in H2; Unfold Rmin; Case (total_order_Rle r2 b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmax; Case (total_order_Rle r2 b); Intro; [Rewrite H5 in H2; Rewrite <- H2; Reflexivity | Elim n; Assumption].
Simpl in H4; Simpl; Apply INR_eq; Apply r_Rplus_plus with R1; Do 2 Rewrite (Rplus_sym R1); Do 2 Rewrite <- S_INR; Rewrite H4; Reflexivity.
-Intros; Unfold constant_D_eq open_interval; Intros; Unfold constant_D_eq open_interval in H6; Assert H9 : (lt (S i) (pred (longueur (cons r1 (cons r2 l))))).
+Intros; Unfold constant_D_eq open_interval; Intros; Unfold constant_D_eq open_interval in H6; Assert H9 : (lt (S i) (pred (Rlength (cons r1 (cons r2 l))))).
Simpl; Simpl in H0; Apply lt_n_S; Assumption.
Assert H10 := (H6 ? H9); Apply H10; Assumption.
Qed.
@@ -183,7 +183,7 @@ Apply (H3 O); Simpl; Apply lt_O_Sn.
Simpl in H5; Rewrite H2 in H5; Rewrite H5; Replace (Rmin b b) with (Rmax a b); [Rewrite <- H4; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity] | Unfold Rmin Rmax; Case (total_order_Rle b b); Case (total_order_Rle a b); Intros; Try Assumption Orelse Reflexivity].
Qed.
-Lemma StepFun_P9 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> ``a<>b`` -> (le (2) (longueur l)).
+Lemma StepFun_P9 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> ``a<>b`` -> (le (2) (Rlength l)).
Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Induction l; [Simpl in H4; Discriminate | Induction l; [Simpl in H3; Simpl in H2; Generalize H3; Generalize H2; Unfold Rmin Rmax; Case (total_order_Rle a b); Intros; Elim H0; Rewrite <- H5; Rewrite <- H7; Reflexivity | Simpl; Do 2 Apply le_n_S; Apply le_O_n]].
Qed.
@@ -449,7 +449,7 @@ Clear Hreci; Simpl; Apply (H21 (S i)).
Simpl; Apply lt_S_n; Assumption.
Unfold open_interval; Apply H2.
Elim H3; Clear H3; Intros; Split.
-Rewrite H9; Change (i:nat) (lt i (pred (longueur (cons r4 lf2)))) ->``(pos_Rl (cons r4 lf2) i)<>(pos_Rl (cons r4 lf2) (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r4 lf2) i)``; Rewrite <- H5; Apply H3.
+Rewrite H9; Change (i:nat) (lt i (pred (Rlength (cons r4 lf2)))) ->``(pos_Rl (cons r4 lf2) i)<>(pos_Rl (cons r4 lf2) (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r4 lf2) i)``; Rewrite <- H5; Apply H3.
Rewrite H5 in H11; Intros; Simpl in H12; Induction i.
Simpl; Red; Intro; Rewrite H13 in H10; Elim (Rlt_antirefl ? H10).
Clear Hreci; Apply (H11 (S i)); Simpl; Apply H12.
@@ -480,7 +480,7 @@ Simpl; Assumption.
Rewrite <- H10; Unfold open_interval; Apply H2.
Elim H3; Clear H3; Intros; Split.
Rewrite H5 in H3; Intros; Apply (H3 (S i)).
-Simpl; Replace (longueur lf2) with (S (pred (longueur lf2))).
+Simpl; Replace (Rlength lf2) with (S (pred (Rlength lf2))).
Apply lt_n_S; Apply H12.
Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H12; Elim (lt_n_O ? H12).
Intros; Simpl in H12; Rewrite H10; Rewrite H5 in H11; Apply (H11 (S i)); Simpl; Apply lt_n_S; Apply H12.
@@ -514,7 +514,7 @@ Lemma StepFun_P19 : (l1:Rlist;f,g:R->R;l:R) (Int_SF (FF l1 [x:R]``(f x)+l*(g x)`
Intros; Induction l1; [Simpl; Ring | Induction l1; Simpl; [Ring | Simpl in Hrecl1; Rewrite Hrecl1; Ring]].
Qed.
-Lemma StepFun_P20 : (l:Rlist;f:R->R) (lt O (longueur l)) -> (longueur l)=(S (longueur (FF l f))).
+Lemma StepFun_P20 : (l:Rlist;f:R->R) (lt O (Rlength l)) -> (Rlength l)=(S (Rlength (FF l f))).
Induction l; Intros; [Elim (lt_n_n ? H) | Simpl; Rewrite RList_P18; Rewrite RList_P14; Induction r0; [Reflexivity | Rewrite (H f); [Reflexivity | Simpl; Apply lt_O_Sn]]].
Qed.
@@ -555,19 +555,19 @@ Apply RList_P5; [Apply RList_P2; Assumption | Assumption].
Rewrite Hyp_max; Apply Rle_antisym.
Induction lf.
Simpl; Right; Assumption.
-Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
-Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (longueur (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
-Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H10 _.
+Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
+Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
+Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _.
Assert H11 := (H10 H8); Elim H11; Intro.
-Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
-Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros.
-Rewrite H15; Assert H17 : (longueur lg)=(S (pred (longueur lg))).
+Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
+Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros.
+Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16).
Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn].
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H8 : (In b (cons_ORlist (cons r lf) lg)).
-Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (longueur (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
+Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
Apply RList_P7; [Apply RList_P2; Assumption | Assumption].
Apply StepFun_P20; Rewrite RList_P11; Rewrite H2; Rewrite H7; Simpl; Apply lt_O_Sn.
Intros; Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq f (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)).
@@ -590,7 +590,7 @@ Rewrite <- H6; Rewrite <- (RList_P15 lf lg).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
+Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
Assumption.
Assumption.
Rewrite H1; Assumption.
@@ -602,8 +602,8 @@ Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8).
Rewrite H0; Assumption.
-Pose I := [j:nat]``(pos_Rl lf j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (longueur lf)); Assert H12 : (Nbound I).
-Unfold Nbound; Exists (longueur lf); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
+Pose I := [j:nat]``(pos_Rl lf j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (Rlength lf)); Assert H12 : (Nbound I).
+Unfold Nbound; Exists (Rlength lf); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
Assert H13 : (EX n:nat | (I n)).
Exists O; Unfold I; Split.
Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) O).
@@ -612,20 +612,20 @@ Apply RList_P15; Try Assumption; Rewrite H1; Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H13.
Apply RList_P2; Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur (cons_ORlist lf lg))).
+Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))).
Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H15 in H8; Elim (lt_n_O ? H8).
Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H5; Rewrite <- H6 in H11; Rewrite <- H5 in H11; Elim (Rlt_antirefl ? H11).
-Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lf0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H9 x0); Assert H17 : (lt x0 (pred (longueur lf))).
-Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (longueur lf))) with (longueur lf).
+Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lf0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H9 x0); Assert H17 : (lt x0 (pred (Rlength lf))).
+Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (Rlength lf))) with (Rlength lf).
Inversion H18.
2:Apply lt_n_S; Assumption.
-Cut x0=(pred (longueur lf)).
+Cut x0=(pred (Rlength lf)).
Intro; Rewrite H19 in H14; Rewrite H5 in H14; Cut ``(pos_Rl (cons_ORlist lf lg) i)<b``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H21)).
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
-Rewrite <- H5; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (longueur (cons_ORlist lf lg)))).
+Rewrite <- H5; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H21.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
@@ -638,8 +638,8 @@ Reflexivity.
Elim H15; Clear H15; Intros; Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Split.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); Try Assumption.
-Assert H22 : (lt (S x0) (longueur lf)).
-Replace (longueur lf) with (S (pred (longueur lf))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H21; Elim (lt_n_O ? H21)].
+Assert H22 : (lt (S x0) (Rlength lf)).
+Replace (Rlength lf) with (S (pred (Rlength lf))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H21; Elim (lt_n_O ? H21)].
Elim (total_order_Rle (pos_Rl lf (S x0)) (pos_Rl (cons_ORlist lf lg) i)); Intro.
Assert H23 : (le (S x0) x0).
Apply H20; Unfold I; Split; Assumption.
@@ -678,17 +678,17 @@ Apply RList_P5; [Apply RList_P2; Assumption | Assumption].
Rewrite Hyp_max; Apply Rle_antisym.
Induction lf.
Simpl; Right; Assumption.
-Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
-Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (longueur (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
-Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H10 _; Assert H11 := (H10 H8); Elim H11; Intro.
-Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
-Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (longueur (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Assert H17 : (longueur lg)=(S (pred (longueur lg))).
+Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
+Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
+Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _; Assert H11 := (H10 H8); Elim H11; Intro.
+Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
+Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16).
Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn].
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H8 : (In b (cons_ORlist (cons r lf) lg)).
-Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (longueur (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
+Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
Apply RList_P7; [Apply RList_P2; Assumption | Assumption].
Apply StepFun_P20; Rewrite RList_P11; Rewrite H7; Rewrite H2; Simpl; Apply lt_O_Sn.
Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq g (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)).
@@ -711,7 +711,7 @@ Rewrite <- H6; Rewrite <- (RList_P15 lf lg); Try Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply le_O_n.
-Apply lt_trans with (pred (longueur (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
+Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
Rewrite H1; Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
@@ -721,24 +721,24 @@ Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8).
Rewrite H0; Assumption.
-Pose I := [j:nat]``(pos_Rl lg j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (longueur lg)); Assert H12 : (Nbound I).
-Unfold Nbound; Exists (longueur lg); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
+Pose I := [j:nat]``(pos_Rl lg j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (Rlength lg)); Assert H12 : (Nbound I).
+Unfold Nbound; Exists (Rlength lg); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
Assert H13 : (EX n:nat | (I n)).
Exists O; Unfold I; Split.
Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) O).
Right; Symmetry; Rewrite H1; Rewrite <- H6; Apply RList_P15; Try Assumption; Rewrite H1; Assumption.
-Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H13; [Apply RList_P2; Assumption | Apply le_O_n | Apply lt_trans with (pred (longueur (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H15 in H8; Elim (lt_n_O ? H8)]].
+Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H13; [Apply RList_P2; Assumption | Apply le_O_n | Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H15 in H8; Elim (lt_n_O ? H8)]].
Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H0; Rewrite <- H1 in H11; Rewrite <- H0 in H11; Elim (Rlt_antirefl ? H11).
-Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lg0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H4 x0); Assert H17 : (lt x0 (pred (longueur lg))).
-Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (longueur lg))) with (longueur lg).
+Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lg0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H4 x0); Assert H17 : (lt x0 (pred (Rlength lg))).
+Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (Rlength lg))) with (Rlength lg).
Inversion H18.
2:Apply lt_n_S; Assumption.
-Cut x0=(pred (longueur lg)).
+Cut x0=(pred (Rlength lg)).
Intro; Rewrite H19 in H14; Rewrite H0 in H14; Cut ``(pos_Rl (cons_ORlist lf lg) i)<b``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H21)).
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
-Rewrite <- H0; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (longueur (cons_ORlist lf lg)))).
+Rewrite <- H0; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H21.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
@@ -752,8 +752,8 @@ Reflexivity.
Elim H15; Clear H15; Intros; Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Split.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); Try Assumption.
-Assert H22 : (lt (S x0) (longueur lg)).
-Replace (longueur lg) with (S (pred (longueur lg))).
+Assert H22 : (lt (S x0) (Rlength lg)).
+Replace (Rlength lg) with (S (pred (Rlength lg))).
Apply lt_n_S; Assumption.
Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H21; Elim (lt_n_O ? H21).
Elim (total_order_Rle (pos_Rl lg (S x0)) (pos_Rl (cons_ORlist lf lg) i)); Intro.
@@ -826,7 +826,7 @@ Apply StepFun_P17 with [x:R](Rabsolu (f x)) a b; [Apply StepFun_P31; Apply StepF
Elim n; Assumption.
Qed.
-Lemma StepFun_P35 : (l:Rlist;a,b:R;f,g:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (longueur l)))==b -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(Int_SF (FF l f) l)<=(Int_SF (FF l g) l)``.
+Lemma StepFun_P35 : (l:Rlist;a,b:R;f,g:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(Int_SF (FF l f) l)<=(Int_SF (FF l g) l)``.
Induction l; Intros.
Right; Reflexivity.
Simpl; Induction r0.
@@ -853,7 +853,7 @@ Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Assert H5 : ``r0<=b``.
-Replace b with (pos_Rl (cons r (cons r0 r1)) (pred (longueur (cons r (cons r0 r1))))).
+Replace b with (pos_Rl (cons r (cons r0 r1)) (pred (Rlength (cons r (cons r0 r1))))).
Replace r0 with (pos_Rl (cons r (cons r0 r1)) (S O)).
Elim (RList_P6 (cons r (cons r0 r1))); Intros; Apply H5.
Assumption.
@@ -898,7 +898,7 @@ EApply StepFun_P25; Apply StepFun_P29.
EApply StepFun_P23; Apply StepFun_P29.
Qed.
-Lemma StepFun_P38 : (l:Rlist;a,b:R;f:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (longueur l)))==b -> (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (longueur l)))->(constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i))) (f (pos_Rl l i)))).
+Lemma StepFun_P38 : (l:Rlist;a,b:R;f:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i))) (f (pos_Rl l i)))).
Induction l.
Intros; Simpl in H0; Simpl in H1; Exists (mkStepFun (StepFun_P4 a b (f b))); Split.
Reflexivity.
@@ -911,7 +911,7 @@ Intros; Clear X; Assert H2 : (ordered_Rlist (cons r1 r2)).
Apply RList_P4 with r; Assumption.
Assert H3 : (pos_Rl (cons r1 r2) O)==r1.
Reflexivity.
-Assert H4 : (pos_Rl (cons r1 r2) (pred (longueur (cons r1 r2))))==b.
+Assert H4 : (pos_Rl (cons r1 r2) (pred (Rlength (cons r1 r2))))==b.
Rewrite <- H1; Reflexivity.
Elim (X0 r1 b f H2 H3 H4); Intros g [H5 H6].
Pose g' := [x:R]Cases (total_order_Rle r1 x) of
@@ -926,7 +926,7 @@ Simpl; Rewrite H12; Replace (Rmin r1 b) with r1.
Simpl in H0; Rewrite <- H0; Apply (H O); Simpl; Apply lt_O_Sn.
Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumption].
Apply (H10 i); Apply lt_S_n.
-Replace (S (pred (longueur lg))) with (longueur lg).
+Replace (S (pred (Rlength lg))) with (Rlength lg).
Apply H9.
Apply S_pred with O; Apply neq_O_lt; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9).
Simpl; Assert H14 : ``a<=b``.
@@ -946,9 +946,9 @@ Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumpti
Rewrite H16 in H12; Rewrite H12 in H14; Elim H14; Clear H14; Intros _ H14; Unfold g'; Case (total_order_Rle r1 x); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H14)).
Reflexivity.
-Change (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i))) (pos_Rl lg2 i)); Clear Hreci; Assert H16 := (H15 i); Assert H17 : (lt i (pred (longueur lg))).
+Change (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i))) (pos_Rl lg2 i)); Clear Hreci; Assert H16 := (H15 i); Assert H17 : (lt i (pred (Rlength lg))).
Apply lt_S_n.
-Replace (S (pred (longueur lg))) with (longueur lg).
+Replace (S (pred (Rlength lg))) with (Rlength lg).
Assumption.
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9).
Assert H18 := (H16 H17); Unfold constant_D_eq open_interval in H18; Unfold constant_D_eq open_interval; Intros; Assert H19 := (H18 ? H14); Rewrite <- H19; Unfold g'; Case (total_order_Rle r1 x); Intro.
@@ -959,7 +959,7 @@ Apply RList_P5.
Assumption.
Elim (RList_P3 lg (pos_Rl lg i)); Intros; Apply H21; Exists i; Split.
Reflexivity.
-Apply lt_trans with (pred (longueur lg)); Try Assumption.
+Apply lt_trans with (pred (Rlength lg)); Try Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H17; Elim (lt_n_O ? H17).
Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n0; Assumption].
Exists (mkStepFun H8); Split.
@@ -970,11 +970,11 @@ Intros; Simpl in H9; Induction i.
Unfold constant_D_eq co_interval; Simpl; Intros; Simpl in H0; Rewrite H0; Elim H10; Clear H10; Intros; Unfold g'; Case (total_order_Rle r1 x); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H11)).
Reflexivity.
-Clear Hreci; Change (constant_D_eq (mkStepFun H8) (co_interval (pos_Rl (cons r1 r2) i) (pos_Rl (cons r1 r2) (S i))) (f (pos_Rl (cons r1 r2) i))); Assert H10 := (H6 i); Assert H11 : (lt i (pred (longueur (cons r1 r2)))).
+Clear Hreci; Change (constant_D_eq (mkStepFun H8) (co_interval (pos_Rl (cons r1 r2) i) (pos_Rl (cons r1 r2) (S i))) (f (pos_Rl (cons r1 r2) i))); Assert H10 := (H6 i); Assert H11 : (lt i (pred (Rlength (cons r1 r2)))).
Simpl; Apply lt_S_n; Assumption.
Assert H12 := (H10 H11); Unfold constant_D_eq co_interval in H12; Unfold constant_D_eq co_interval; Intros; Rewrite <- (H12 ? H13); Simpl; Unfold g'; Case (total_order_Rle r1 x); Intro.
Reflexivity.
-Elim n; Elim H13; Clear H13; Intros; Apply Rle_trans with (pos_Rl (cons r1 r2) i); Try Assumption; Change ``(pos_Rl (cons r1 r2) O)<=(pos_Rl (cons r1 r2) i)``; Elim (RList_P6 (cons r1 r2)); Intros; Apply H15; [Assumption | Apply le_O_n | Simpl; Apply lt_trans with (longueur r2); [Apply lt_S_n; Assumption | Apply lt_n_Sn]].
+Elim n; Elim H13; Clear H13; Intros; Apply Rle_trans with (pos_Rl (cons r1 r2) i); Try Assumption; Change ``(pos_Rl (cons r1 r2) O)<=(pos_Rl (cons r1 r2) i)``; Elim (RList_P6 (cons r1 r2)); Intros; Apply H15; [Assumption | Apply le_O_n | Simpl; Apply lt_trans with (Rlength r2); [Apply lt_S_n; Assumption | Apply lt_n_Sn]].
Qed.
Lemma StepFun_P39 : (a,b:R;f:(StepFun a b)) (RiemannInt_SF f)==(Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))))).
@@ -997,19 +997,19 @@ Rewrite H9; Unfold Rmin Rmax; Case (total_order_Rle b c); Case (total_order_Rle
Red; Intro; Rewrite H1 in H11; Discriminate.
Apply StepFun_P20.
Rewrite RList_P23; Apply neq_O_lt; Red; Intro.
-Assert H2 : (plus (longueur l1) (longueur l2))=O.
+Assert H2 : (plus (Rlength l1) (Rlength l2))=O.
Symmetry; Apply H1.
Elim (plus_is_O ? ? H2); Intros; Rewrite H12 in H6; Discriminate.
-Unfold constant_D_eq open_interval; Intros; Elim (le_or_lt (S (S i)) (longueur l1)); Intro.
+Unfold constant_D_eq open_interval; Intros; Elim (le_or_lt (S (S i)) (Rlength l1)); Intro.
Assert H14 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l1 i).
-Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Apply le_S_n; Apply le_trans with (longueur l1); [Assumption | Apply le_n_Sn].
+Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Apply le_S_n; Apply le_trans with (Rlength l1); [Assumption | Apply le_n_Sn].
Assert H15 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l1 (S i)).
Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Assumption.
-Rewrite H14 in H2; Rewrite H15 in H2; Assert H16 : (le (2) (longueur l1)).
+Rewrite H14 in H2; Rewrite H15 in H2; Assert H16 : (le (2) (Rlength l1)).
Apply le_trans with (S (S i)); [Repeat Apply le_n_S; Apply le_O_n | Assumption].
Elim (RList_P20 ? H16); Intros r1 [r2 [r3 H17]]; Rewrite H17; Change (f x)==(pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i); Rewrite RList_P12.
Induction i.
-Simpl; Assert H18 := (H8 O); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt O (pred (longueur l1))).
+Simpl; Assert H18 := (H8 O); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt O (pred (Rlength l1))).
Rewrite H17; Simpl; Apply lt_O_Sn.
Assert H20 := (H18 H19); Repeat Rewrite H20.
Reflexivity.
@@ -1023,7 +1023,7 @@ Rewrite H17; Simpl; Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; R
Elim H2; Intros; Rewrite H17 in H23; Rewrite H17 in H24; Simpl in H24; Simpl in H23; Rewrite H22 in H23; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H23 H24)).
Assumption.
Clear Hreci; Rewrite RList_P13.
-Rewrite H17 in H14; Rewrite H17 in H15; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; Rewrite H14; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))==(pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15; Rewrite H15; Assert H18 := (H8 (S i)); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt (S i) (pred (longueur l1))).
+Rewrite H17 in H14; Rewrite H17 in H15; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; Rewrite H14; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))==(pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15; Rewrite H15; Assert H18 := (H8 (S i)); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt (S i) (pred (Rlength l1))).
Apply lt_pred; Apply lt_S_n; Apply le_lt_n_Sm; Assumption.
Assert H20 := (H18 H19); Repeat Rewrite H20.
Reflexivity.
@@ -1047,22 +1047,22 @@ Simpl in H15; Discriminate.
Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption.
Assert H17 : (pos_Rl (cons_Rlist l1 l2) i)==b.
Rewrite RList_P26.
-Replace i with (pred (longueur l1)); [Rewrite H4; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption] | Rewrite H15; Reflexivity].
+Replace i with (pred (Rlength l1)); [Rewrite H4; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption] | Rewrite H15; Reflexivity].
Rewrite H15; Apply lt_n_Sn.
Rewrite H16 in H2; Rewrite H17 in H2; Elim H2; Intros; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H14 H18)).
-Assert H16 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l2 (minus i (longueur l1))).
+Assert H16 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l2 (minus i (Rlength l1))).
Apply RList_P29.
Apply le_S_n; Assumption.
-Apply lt_le_trans with (pred (longueur (cons_Rlist l1 l2))); [Assumption | Apply le_pred_n].
-Assert H17 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (S (minus i (longueur l1)))).
-Replace (S (minus i (longueur l1))) with (minus (S i) (longueur l1)).
+Apply lt_le_trans with (pred (Rlength (cons_Rlist l1 l2))); [Assumption | Apply le_pred_n].
+Assert H17 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (S (minus i (Rlength l1)))).
+Replace (S (minus i (Rlength l1))) with (minus (S i) (Rlength l1)).
Apply RList_P29.
Apply le_S_n; Apply le_trans with (S i); [Assumption | Apply le_n_Sn].
Induction l1.
Simpl in H6; Discriminate.
Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption.
Symmetry; Apply minus_Sn_m; Apply le_S_n; Assumption.
-Assert H18 : (le (2) (longueur l1)).
+Assert H18 : (le (2) (Rlength l1)).
Clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17; Induction l1.
Discriminate.
Clear Hrecl1; Induction l1.
@@ -1074,29 +1074,29 @@ Elim (RList_P20 ? H18); Intros r1 [r2 [r3 H19]]; Rewrite H19; Change (f x)==(pos
Induction i.
Assert H20 := (le_S_n ? ? H15); Assert H21 := (le_trans ? ? ? H18 H20); Elim (le_Sn_O ? H21).
Clear Hreci; Rewrite RList_P13.
-Rewrite H19 in H16; Rewrite H19 in H17; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl l2 (minus (S i) (longueur (cons r1 (cons r2 r3))))) in H16; Rewrite H16; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))== (pos_Rl l2 (S (minus (S i) (longueur (cons r1 (cons r2 r3)))))) in H17; Rewrite H17; Assert H20 := (H13 (minus (S i) (longueur l1))); Unfold constant_D_eq open_interval in H20; Assert H21 : (lt (minus (S i) (longueur l1)) (pred (longueur l2))).
+Rewrite H19 in H16; Rewrite H19 in H17; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl l2 (minus (S i) (Rlength (cons r1 (cons r2 r3))))) in H16; Rewrite H16; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))== (pos_Rl l2 (S (minus (S i) (Rlength (cons r1 (cons r2 r3)))))) in H17; Rewrite H17; Assert H20 := (H13 (minus (S i) (Rlength l1))); Unfold constant_D_eq open_interval in H20; Assert H21 : (lt (minus (S i) (Rlength l1)) (pred (Rlength l2))).
Apply lt_pred; Rewrite minus_Sn_m.
-Apply simpl_lt_plus_l with (longueur l1); Rewrite <- le_plus_minus.
+Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus.
Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption.
Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn].
Apply le_S_n; Assumption.
Assert H22 := (H20 H21); Repeat Rewrite H22.
Reflexivity.
-Rewrite <- H19; Assert H23 : ``(pos_Rl l2 (minus (S i) (longueur l1)))<=(pos_Rl l2 (S (minus (S i) (longueur l1))))``.
+Rewrite <- H19; Assert H23 : ``(pos_Rl l2 (minus (S i) (Rlength l1)))<=(pos_Rl l2 (S (minus (S i) (Rlength l1))))``.
Apply H7; Apply lt_pred.
Rewrite minus_Sn_m.
-Apply simpl_lt_plus_l with (longueur l1); Rewrite <- le_plus_minus.
+Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus.
Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption.
Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn].
Apply le_S_n; Assumption.
Elim H23; Intro.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
-Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l2 (minus (S i) (longueur l1)))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
+Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l2 (minus (S i) (Rlength l1)))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite <- H19 in H16; Rewrite <- H19 in H17; Elim H2; Intros; Rewrite H19 in H25; Rewrite H19 in H26; Simpl in H25; Simpl in H16; Rewrite H16 in H25; Simpl in H26; Simpl in H17; Rewrite H17 in H26; Simpl in H24; Rewrite H24 in H25; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H25 H26)).
-Assert H23 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (minus (S i) (longueur l1))).
+Assert H23 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (minus (S i) (Rlength l1))).
Rewrite H19; Simpl; Simpl in H16; Apply H16.
-Assert H24 : (pos_Rl (cons_Rlist l1 l2) (S (S i)))==(pos_Rl l2 (S (minus (S i) (longueur l1)))).
+Assert H24 : (pos_Rl (cons_Rlist l1 l2) (S (S i)))==(pos_Rl l2 (S (minus (S i) (Rlength l1)))).
Rewrite H19; Simpl; Simpl in H17; Apply H17.
Rewrite <- H23; Rewrite <- H24; Assumption.
Simpl; Rewrite H19 in H1; Simpl in H1; Apply lt_S_n; Assumption.
@@ -1115,7 +1115,7 @@ Split with l2; Split with lf2; Rewrite <- b0 in H2; Assumption.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)).
Qed.
-Lemma StepFun_P42 : (l1,l2:Rlist;f:R->R) (pos_Rl l1 (pred (longueur l1)))==(pos_Rl l2 O) -> ``(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)) == (Int_SF (FF l1 f) l1) + (Int_SF (FF l2 f) l2)``.
+Lemma StepFun_P42 : (l1,l2:Rlist;f:R->R) (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 O) -> ``(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)) == (Int_SF (FF l1 f) l1) + (Int_SF (FF l2 f) l2)``.
Induction l1; [Intros; Simpl; Ring | Induction r0; [Intros; Simpl in H0; Simpl; Induction l2; [Simpl; Ring | Simpl; Simpl in H0; Rewrite H0; Ring] | Intros; Simpl; Rewrite Rplus_assoc; Apply Rplus_plus_r; Apply (H0 l2 f); Rewrite <- H1; Reflexivity]].
Qed.
@@ -1291,7 +1291,7 @@ Rewrite H6; Unfold ordered_Rlist; Intros; Simpl in H8; Inversion H8; [Simpl; Ass
Simpl; Unfold Rmin; Case (total_order_Rle a c); Intro; [Assumption | Elim n; Assumption].
Simpl; Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n; Assumption].
Unfold constant_D_eq open_interval; Intros; Simpl in H8; Inversion H8.
-Simpl; Assert H10 := (H7 O); Assert H12 : (lt (0) (pred (longueur (cons r (cons r1 r2))))).
+Simpl; Assert H10 := (H7 O); Assert H12 : (lt (0) (pred (Rlength (cons r (cons r1 r2))))).
Simpl; Apply lt_O_Sn.
Apply (H10 H12); Unfold open_interval; Simpl; Rewrite H11 in H9; Simpl in H9; Elim H9; Clear H9; Intros; Split; Try Assumption.
Apply Rlt_le_trans with c; Assumption.
@@ -1318,7 +1318,7 @@ Rewrite <- H11; Reflexivity.
Unfold Rmax; Case (total_order_Rle r1 c); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Elim H0; Intros; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Simpl; Simpl in H13; Rewrite H13; Reflexivity.
Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i.
-Simpl; Assert H17 := (H10 O); Assert H18 : (lt (0) (pred (longueur (cons r (cons r1 r2))))).
+Simpl; Assert H17 := (H10 O); Assert H18 : (lt (0) (pred (Rlength (cons r (cons r1 r2))))).
Simpl; Apply lt_O_Sn.
Apply (H17 H18); Unfold open_interval; Simpl; Simpl in H4; Elim H4; Clear H4; Intros; Split; Try Assumption; Replace r1 with r4.
Assumption.