diff options
author | Enrico Tassi <Enrico.Tassi@inria.fr> | 2018-06-19 10:47:53 +0200 |
---|---|---|
committer | Enrico Tassi <Enrico.Tassi@inria.fr> | 2018-06-22 10:56:40 +0200 |
commit | cb81adb6a438fe218e11192b09e085770c7d3067 (patch) | |
tree | a4c863925a62af37dbcf6fbef502767216917ca8 | |
parent | 97485c08cb03987e8d7f2aa98e28510b7187126a (diff) |
[ssr] test case for rewrite and set on univ poly keys
-rw-r--r-- | test-suite/ssr/rew_polyuniv.v | 90 | ||||
-rw-r--r-- | test-suite/ssr/set_polyuniv.v | 11 |
2 files changed, 101 insertions, 0 deletions
diff --git a/test-suite/ssr/rew_polyuniv.v b/test-suite/ssr/rew_polyuniv.v new file mode 100644 index 000000000..e2bbbc9ec --- /dev/null +++ b/test-suite/ssr/rew_polyuniv.v @@ -0,0 +1,90 @@ +From Coq Require Import Utf8 Setoid ssreflect. +Set Default Proof Using "Type". + +Local Set Universe Polymorphism. + +(** Telescopes *) +Inductive tele : Type := + | TeleO : tele + | TeleS {X} (binder : X → tele) : tele. + +Arguments TeleS {_} _. + +(** The telescope version of Coq's function type *) +Fixpoint tele_fun (TT : tele) (T : Type) : Type := + match TT with + | TeleO => T + | TeleS b => ∀ x, tele_fun (b x) T + end. + +Notation "TT -t> A" := + (tele_fun TT A) (at level 99, A at level 200, right associativity). + +(** A sigma-like type for an "element" of a telescope, i.e. the data it + takes to get a [T] from a [TT -t> T]. *) +Inductive tele_arg : tele → Type := +| TargO : tele_arg TeleO +(* the [x] is the only relevant data here *) +| TargS {X} {binder} (x : X) : tele_arg (binder x) → tele_arg (TeleS binder). + +Definition tele_app {TT : tele} {T} (f : TT -t> T) : tele_arg TT → T := + λ a, (fix rec {TT} (a : tele_arg TT) : (TT -t> T) → T := + match a in tele_arg TT return (TT -t> T) → T with + | TargO => λ t : T, t + | TargS x a => λ f, rec a (f x) + end) TT a f. +Arguments tele_app {!_ _} _ !_ /. + +Coercion tele_arg : tele >-> Sortclass. +Coercion tele_app : tele_fun >-> Funclass. + +(** Inversion lemma for [tele_arg] *) +Lemma tele_arg_inv {TT : tele} (a : TT) : + match TT as TT return TT → Prop with + | TeleO => λ a, a = TargO + | TeleS f => λ a, ∃ x a', a = TargS x a' + end a. +Proof. induction a; eauto. Qed. +Lemma tele_arg_O_inv (a : TeleO) : a = TargO. +Proof. exact (tele_arg_inv a). Qed. +Lemma tele_arg_S_inv {X} {f : X → tele} (a : TeleS f) : + ∃ x a', a = TargS x a'. +Proof. exact (tele_arg_inv a). Qed. + +(** Operate below [tele_fun]s with argument telescope [TT]. *) +Fixpoint tele_bind {U} {TT : tele} : (TT → U) → TT -t> U := + match TT as TT return (TT → U) → TT -t> U with + | TeleO => λ F, F TargO + | @TeleS X b => λ (F : TeleS b → U) (x : X), (* b x -t> U *) + tele_bind (λ a, F (TargS x a)) + end. +Arguments tele_bind {_ !_} _ /. + +(* Show that tele_app ∘ tele_bind is the identity. *) +Lemma tele_app_bind {U} {TT : tele} (f : TT → U) x : + (tele_app (tele_bind f)) x = f x. +Proof. + induction TT as [|X b IH]; simpl in *. + - rewrite (tele_arg_O_inv x). auto. + - destruct (tele_arg_S_inv x) as [x' [a' ->]]. simpl. + rewrite IH. auto. +Qed. + +(** Notation-compatible telescope mapping *) +(* This adds (tele_app ∘ tele_bind), which is an identity function, around every + binder so that, after simplifying, this matches the way we typically write + notations involving telescopes. *) +Notation "'λ..' x .. y , e" := + (tele_app (tele_bind (λ x, .. (tele_app (tele_bind (λ y, e))) .. ))) + (at level 200, x binder, y binder, right associativity, + format "'[ ' 'λ..' x .. y ']' , e"). + +(* The testcase *) +Lemma test {TA TB : tele} {X} (α' β' γ' : X → Prop) (Φ : TA → TB → Prop) x' : + (forall P Q, ((P /\ Q) = Q) * ((P -> Q) = Q)) -> + ∀ a b, Φ a b = (λ.. x y, β' x' ∧ (γ' x' → Φ x y)) a b. +Proof. +intros cheat a b. +rewrite !tele_app_bind. +by rewrite !cheat. +Qed. diff --git a/test-suite/ssr/set_polyuniv.v b/test-suite/ssr/set_polyuniv.v new file mode 100644 index 000000000..436eeafc7 --- /dev/null +++ b/test-suite/ssr/set_polyuniv.v @@ -0,0 +1,11 @@ +From Coq Require Import ssreflect. +Set Default Proof Using "Type". + +Local Set Universe Polymorphism. + +Axiom foo : Type -> Prop. + +Lemma test : foo nat. +Proof. +set x := foo _. (* key @foo{i} matches @foo{j} *) +Abort. |