aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar kirchner <kirchner@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-03-29 09:33:23 +0000
committerGravatar kirchner <kirchner@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-03-29 09:33:23 +0000
commitb7c0e4a1c4fb97a19c7f897b8b09a76aca6467f1 (patch)
tree16a53d26c5e1407abbbb0ad652de9441190e41bc
parentac3bb98c1baac45386c1ce07f68c485806ebe61a (diff)
*** empty log message ***
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8519 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--doc/newfaq/main.tex25
1 files changed, 18 insertions, 7 deletions
diff --git a/doc/newfaq/main.tex b/doc/newfaq/main.tex
index eac92da90..9b679c828 100644
--- a/doc/newfaq/main.tex
+++ b/doc/newfaq/main.tex
@@ -201,10 +201,11 @@ The main \Coq mailing list is \url{coq-club@pauillac.inria.fr}, which
broadcasts questions and suggestions about the implementation, the
logical formalism or proof developments. See
\url{http://pauillac.inria.fr/mailman/listinfo/coq-club} for
-subsription. Bugs reports should be sent at the \url{coq-bugs@pauillac.inria.fr} mailing-list.
+subsription. Bugs reports should be sent at
+\url{coq-bugs@pauillac.inria.fr}.
\Question[coqmailinglistarchive]{Where can I find an archive of the list?}
-The archives of the \Coq mailing list are abvailable at
+The archives of the \Coq mailing list are available at
\url{http://pauillac.inria.fr/pipermail/coq-club}.
\Question[coqbook]{Is there any book about \Coq ?}
@@ -311,7 +312,7 @@ automatic naming decreases readability and robustness.
\Question[exist]{My goal is an existential, how can I prove it ?}
-Use some theorem or assumption or exhibits the witness using \exists tactic.
+Use some theorem or assumption or exhibit the witness using the \exists tactic.
\begin{coq_example}
Goal exists x:nat, forall y, x+y=y.
exists 0.
@@ -346,7 +347,7 @@ Qed.
\end{coq_example}
-\Question[congnot]{My goal is disequality solvable by a sequence of rewrites, how can I prove it ?}
+\Question[congnot]{My goal is an inequality solvable by a sequence of rewrites, how can I prove it ?}
Just use the \congruence tactic.
%\begin{coq_example}
@@ -403,12 +404,16 @@ Qed.
\Question[gb]{My goal is an equation solvable using equational hypothesis on some ring (e.g. natural numbers), how can I prove it ?}
-Just use the \gb tactic.
+You need the \gb tactic.
\Question[apply]{My goal is solvable by some lemma, how can I prove it ?}
Just use the \apply tactic.
+\begin{coq_eval}
+Reset Initial.
+\end{coq_eval}
+
\begin{coq_example}
Lemma mylemma : forall x, x+0 = x.
auto.
@@ -512,7 +517,7 @@ You can use the \simpl tactic.
You can use the \set or \pose tactics.
-\Question[case]{How can I perform can analysis ?}
+\Question[case]{How can I perform case analysis ?}
You can use the \case or \destruct tactics.
@@ -647,7 +652,13 @@ end.
\end{center}
Underscore matches all terms.
-\Question[matchsem]{What is the semantic for match goal ?}
+\Question[matchsem]{What is the semantics for match goal ?}
+
+{\tt match goal} matches the current goal against a series of
+patterns: {$hyp_1 \ldots hyp_n$ \textbar- $ccl$}. It uses a
+first-order unification algorithm, and tries all the possible
+combinations of $hyp_i$ before dropping the branch and moving to the
+next one. Underscore matches all terms.
\Question[fresh]{How can I generate a new name ?}