aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-10-18 11:34:33 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-10-18 11:34:33 +0000
commitb1c3f20e9c27ba5c2e244300664c59bf0af00de3 (patch)
tree4726398684ac22c6ecc742383c3a5ddf28750cd0
parent8af1c9d641bd5456a8704ce195956ceb18c04e12 (diff)
Typos
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8253 85f007b7-540e-0410-9357-904b9bb8a0f7
-rwxr-xr-xdoc/RefMan-cic.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/doc/RefMan-cic.tex b/doc/RefMan-cic.tex
index 08cfe30ef..391bcf27c 100755
--- a/doc/RefMan-cic.tex
+++ b/doc/RefMan-cic.tex
@@ -857,8 +857,8 @@ which in general depends on $m$. For this, it is enough to prove the
property for $m = (c_i~u_1\ldots u_{p_i})$ for each constructor of $I$.
This proof will be denoted by a generic term:
-\[\Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 \ldots
-(c_n~x_{n1}~|~...~|~x_{np_n}) \mbox{\tt =>} f_n }\]
+\[\Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 ~|~\ldots~|~
+(c_n~x_{n1}...x_{np_n}) \mbox{\tt =>} f_n }\]
In this expression, if $m$ is a term built from a constructor
$(c_i~u_1\ldots u_{p_i})$ then the expression will behave as it is specified
with $i$-th branch and will reduce to $f_i$ where the $x_{i1}$\ldots $x_{ip_i}$ are
@@ -1011,11 +1011,11 @@ $(a:A)(l:\ListA)(n:\nat)(\LengthA~l~n)\ra(P~(\cons~A~a~l)~(\nS~n))$.
\paragraph{Typing rule.}
Our very general destructor for inductive definition enjoys the
-following typing rule (we write {\Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]f_1\ldots [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}f_n} for \Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 \ldots
-(c_n~x_{n1}~|~...~|~x_{np_n}) \mbox{\tt =>} f_n }}):
+following typing rule (we write {\Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]g_1\ldots [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}]g_n} for \Case{P}{c}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} g_1 ~|~\ldots~|~
+(c_n~x_{n1}...x_{np_n}) \mbox{\tt =>} g_n }}):
\begin{description}
-\item[Case] \label{elimdep} \index{Typing rules!Case}
+\item[Cases] \label{elimdep} \index{Typing rules!Cases}
\inference{
\frac{\WTEG{c}{(I~q_1\ldots q_r~t_1\ldots t_s)}~~
\WTEG{P}{B}~~\compat{(I~q_1\ldots q_r)}{B}