diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-10-18 11:34:33 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-10-18 11:34:33 +0000 |
commit | b1c3f20e9c27ba5c2e244300664c59bf0af00de3 (patch) | |
tree | 4726398684ac22c6ecc742383c3a5ddf28750cd0 | |
parent | 8af1c9d641bd5456a8704ce195956ceb18c04e12 (diff) |
Typos
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8253 85f007b7-540e-0410-9357-904b9bb8a0f7
-rwxr-xr-x | doc/RefMan-cic.tex | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/doc/RefMan-cic.tex b/doc/RefMan-cic.tex index 08cfe30ef..391bcf27c 100755 --- a/doc/RefMan-cic.tex +++ b/doc/RefMan-cic.tex @@ -857,8 +857,8 @@ which in general depends on $m$. For this, it is enough to prove the property for $m = (c_i~u_1\ldots u_{p_i})$ for each constructor of $I$. This proof will be denoted by a generic term: -\[\Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 \ldots -(c_n~x_{n1}~|~...~|~x_{np_n}) \mbox{\tt =>} f_n }\] +\[\Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 ~|~\ldots~|~ +(c_n~x_{n1}...x_{np_n}) \mbox{\tt =>} f_n }\] In this expression, if $m$ is a term built from a constructor $(c_i~u_1\ldots u_{p_i})$ then the expression will behave as it is specified with $i$-th branch and will reduce to $f_i$ where the $x_{i1}$\ldots $x_{ip_i}$ are @@ -1011,11 +1011,11 @@ $(a:A)(l:\ListA)(n:\nat)(\LengthA~l~n)\ra(P~(\cons~A~a~l)~(\nS~n))$. \paragraph{Typing rule.} Our very general destructor for inductive definition enjoys the -following typing rule (we write {\Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]f_1\ldots [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}f_n} for \Case{P}{m}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} f_1 \ldots -(c_n~x_{n1}~|~...~|~x_{np_n}) \mbox{\tt =>} f_n }}): +following typing rule (we write {\Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]g_1\ldots [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}]g_n} for \Case{P}{c}{(c_1~x_{11}~...~x_{1p_1}) \mbox{\tt =>} g_1 ~|~\ldots~|~ +(c_n~x_{n1}...x_{np_n}) \mbox{\tt =>} g_n }}): \begin{description} -\item[Case] \label{elimdep} \index{Typing rules!Case} +\item[Cases] \label{elimdep} \index{Typing rules!Cases} \inference{ \frac{\WTEG{c}{(I~q_1\ldots q_r~t_1\ldots t_s)}~~ \WTEG{P}{B}~~\compat{(I~q_1\ldots q_r)}{B} |