diff options
author | Hugo Herbelin <Hugo.Herbelin@inria.fr> | 2017-11-03 11:48:36 +0100 |
---|---|---|
committer | Hugo Herbelin <Hugo.Herbelin@inria.fr> | 2018-02-20 10:03:08 +0100 |
commit | 9fe03a830ae7b10e1c5fb2b9d41213257bd617f0 (patch) | |
tree | 677d8b51c334389fa1a6bcbc42e8d022db93490b | |
parent | 0c4eea2553d5b3b70d0b5baaf92781a544de83bd (diff) |
Adding notations of the form "{'pat|P}", "exists2 'pat, P & Q", etc.
-rw-r--r-- | test-suite/output/Notations3.out | 12 | ||||
-rw-r--r-- | test-suite/output/Notations3.v | 27 | ||||
-rw-r--r-- | theories/Init/Logic.v | 7 | ||||
-rw-r--r-- | theories/Init/Specif.v | 26 |
4 files changed, 68 insertions, 4 deletions
diff --git a/test-suite/output/Notations3.out b/test-suite/output/Notations3.out index 436e97e9f..e6a6e0288 100644 --- a/test-suite/output/Notations3.out +++ b/test-suite/output/Notations3.out @@ -194,9 +194,11 @@ pair (prod nat (prod nat nat))) (prod (prod nat nat) nat) fun x : nat => if x is n .+ 1 then n else 1 : nat -> nat +{'{{x, y}} : nat * nat | x + y = 0} + : Set exists2' {{x, y}}, x = 0 & y = 0 : Prop -exists2 x : nat * nat, +myexists2 x : nat * nat, let '{{y, z}} := x in y > z & let '{{y, z}} := x in z > y : Prop fun '({{x, y}} as z) => x + y = 0 /\ z = z @@ -225,3 +227,11 @@ fun N : nat => [N | N + 0] : nat -> nat * (nat -> nat) fun S : nat => [[S | S + S]] : nat -> nat * (nat -> nat) +{I : nat | I = I} + : Set +{'I : True | I = I} + : Prop +{'{{x, y}} : nat * nat | x + y = 0} + : Set +exists2 '{{y, z}} : nat * nat, y > z & z > y + : Prop diff --git a/test-suite/output/Notations3.v b/test-suite/output/Notations3.v index df3d86793..f41ddac4d 100644 --- a/test-suite/output/Notations3.v +++ b/test-suite/output/Notations3.v @@ -341,6 +341,10 @@ Check fun x => if x is n.+1 then n else 1. (* Examples with binding patterns *) +Import SpecifPatternNotations. + +Check {'(x,y)|x+y=0}. + Module D. Notation "'exists2'' x , p & q" := (ex2 (fun x => p) (fun x => q)) (at level 200, x pattern, p at level 200, right associativity, @@ -353,7 +357,15 @@ End D. (* Ensuring for reparsability that printer of notations does not use a pattern where only an ident could be reparsed *) -Check ex2 (fun x => let '(y,z) := x in y>z) (fun x => let '(y,z) := x in z>y). +Module E. +Inductive myex2 {A:Type} (P Q:A -> Prop) : Prop := + myex_intro2 : forall x:A, P x -> Q x -> myex2 P Q. +Notation "'myexists2' x : A , p & q" := (myex2 (A:=A) (fun x => p) (fun x => q)) + (at level 200, x ident, A at level 200, p at level 200, right associativity, + format "'[' 'myexists2' '/ ' x : A , '/ ' '[' p & '/' q ']' ']'") + : type_scope. +Check myex2 (fun x => let '(y,z) := x in y>z) (fun x => let '(y,z) := x in z>y). +End E. (* A canonical example of a notation with a non-recursive binder *) @@ -391,7 +403,7 @@ Check fun p => if p is S n then n else 0. Check fun p => if p is Lt then 1 else 0. (* Check that mixed binders and terms defaults to ident and not pattern *) -Module E. +Module F. (* First without an indirection *) Notation "[ n | t ]" := (n, (fun n : nat => t)). Check fun S : nat => [ S | S+S ]. @@ -400,4 +412,13 @@ Check fun N : nat => (N, (fun n => n+0)). (* another test in passing *) Notation "[[ n | p | t ]]" := (n, (fun p : nat => t)). Notation "[[ n | t ]]" := [[ n | n | t ]]. Check fun S : nat => [[ S | S+S ]]. -End E. +End F. + +(* Check parsability/printability of {x|P} and variants *) + +Check {I:nat|I=I}. +Check {'I:True|I=I}. +Check {'(x,y)|x+y=0}. + +(* Check exists2 with a pattern *) +Check ex2 (fun x => let '(y,z) := x in y>z) (fun x => let '(y,z) := x in z>y). diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 037d37daf..053ed601f 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -267,6 +267,13 @@ Notation "'exists2' x : A , p & q" := (ex2 (A:=A) (fun x => p) (fun x => q)) format "'[' 'exists2' '/ ' x : A , '/ ' '[' p & '/' q ']' ']'") : type_scope. +Notation "'exists2' ' x , p & q" := (ex2 (fun x => p) (fun x => q)) + (at level 200, x strict pattern, p at level 200, right associativity) : type_scope. +Notation "'exists2' ' x : A , p & q" := (ex2 (A:=A) (fun x => p) (fun x => q)) + (at level 200, x strict pattern, A at level 200, p at level 200, right associativity, + format "'[' 'exists2' '/ ' ' x : A , '/ ' '[' p & '/' q ']' ']'") + : type_scope. + (** Derived rules for universal quantification *) Section universal_quantification. diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v index 3b4f833a3..ef95aef50 100644 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -53,6 +53,32 @@ Notation "{ x : A & P }" := (sigT (A:=A) (fun x => P)) : type_scope. Notation "{ x : A & P & Q }" := (sigT2 (A:=A) (fun x => P) (fun x => Q)) : type_scope. +Module SpecifPatternNotations. + +Reserved Notation "{ ' pat | P }" + (at level 0, pat strict pattern, format "{ ' pat | P }"). +Reserved Notation "{ ' pat | P & Q }" + (at level 0, pat strict pattern, format "{ ' pat | P & Q }"). +Reserved Notation "{ ' pat : A | P }" + (at level 0, pat strict pattern, format "{ ' pat : A | P }"). +Reserved Notation "{ ' pat : A | P & Q }" + (at level 0, pat strict pattern, format "{ ' pat : A | P & Q }"). +Reserved Notation "{ ' pat : A & P }" + (at level 0, pat strict pattern, format "{ ' pat : A & P }"). +Reserved Notation "{ ' pat : A & P & Q }" + (at level 0, pat strict pattern, format "{ ' pat : A & P & Q }"). + +Notation "{ ' pat | P }" := (sig (fun pat => P)) : type_scope. +Notation "{ ' pat | P & Q }" := (sig2 (fun pat => P) (fun pat => Q)) : type_scope. +Notation "{ ' pat : A | P }" := (sig (A:=A) (fun pat => P)) : type_scope. +Notation "{ ' pat : A | P & Q }" := (sig2 (A:=A) (fun pat => P) (fun pat => Q)) : + type_scope. +Notation "{ ' pat : A & P }" := (sigT (A:=A) (fun pat => P)) : type_scope. +Notation "{ ' pat : A & P & Q }" := (sigT2 (A:=A) (fun pat => P) (fun pat => Q)) : + type_scope. + +End SpecifPatternNotations. + Add Printing Let sig. Add Printing Let sig2. Add Printing Let sigT. |