diff options
author | Arnaud Spiwack <arnaud@spiwack.net> | 2017-02-14 08:50:16 +0100 |
---|---|---|
committer | Arnaud Spiwack <arnaud@spiwack.net> | 2017-02-14 08:50:16 +0100 |
commit | 7ce9edaeb49520990efb6785627cc1d6c80f7be6 (patch) | |
tree | b0abe791900b1593e1291fd42edea882549366ed | |
parent | 890e0738000d6f12d51761a315b0dd09a915b6c9 (diff) |
Test-suite: output of Search
Fix the ordering of the results in the output of Search to correspond
to the "priority" ordering.
-rw-r--r-- | test-suite/output/Search.out | 114 | ||||
-rw-r--r-- | test-suite/output/SearchHead.out | 42 | ||||
-rw-r--r-- | test-suite/output/SearchPattern.out | 84 |
3 files changed, 120 insertions, 120 deletions
diff --git a/test-suite/output/Search.out b/test-suite/output/Search.out index c17b285bc..81fda176e 100644 --- a/test-suite/output/Search.out +++ b/test-suite/output/Search.out @@ -1,108 +1,108 @@ le_n: forall n : nat, n <= n +le_0_n: forall n : nat, 0 <= n le_S: forall n m : nat, n <= m -> n <= S m +le_n_S: forall n m : nat, n <= m -> S n <= S m +le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m +le_S_n: forall n m : nat, S n <= S m -> n <= m +min_l: forall n m : nat, n <= m -> Nat.min n m = n +max_r: forall n m : nat, n <= m -> Nat.max n m = m +min_r: forall n m : nat, m <= n -> Nat.min n m = m +max_l: forall n m : nat, m <= n -> Nat.max n m = n le_ind: forall (n : nat) (P : nat -> Prop), P n -> (forall m : nat, n <= m -> P m -> P (S m)) -> forall n0 : nat, n <= n0 -> P n0 -le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m -le_S_n: forall n m : nat, S n <= S m -> n <= m -le_0_n: forall n : nat, 0 <= n -le_n_S: forall n m : nat, n <= m -> S n <= S m -max_l: forall n m : nat, m <= n -> Nat.max n m = n -max_r: forall n m : nat, n <= m -> Nat.max n m = m -min_l: forall n m : nat, n <= m -> Nat.min n m = n -min_r: forall n m : nat, m <= n -> Nat.min n m = m -true: bool false: bool -bool_rect: forall P : bool -> Type, P true -> P false -> forall b : bool, P b -bool_ind: forall P : bool -> Prop, P true -> P false -> forall b : bool, P b -bool_rec: forall P : bool -> Set, P true -> P false -> forall b : bool, P b -andb: bool -> bool -> bool -orb: bool -> bool -> bool -implb: bool -> bool -> bool -xorb: bool -> bool -> bool +true: bool +is_true: bool -> Prop negb: bool -> bool -andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true -andb_true_intro: - forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true eq_true: bool -> Prop -eq_true_rect: - forall P : bool -> Type, P true -> forall b : bool, eq_true b -> P b -eq_true_ind: - forall P : bool -> Prop, P true -> forall b : bool, eq_true b -> P b +implb: bool -> bool -> bool +orb: bool -> bool -> bool +andb: bool -> bool -> bool +xorb: bool -> bool -> bool +Nat.even: nat -> bool +Nat.odd: nat -> bool +BoolSpec: Prop -> Prop -> bool -> Prop +Nat.eqb: nat -> nat -> bool +Nat.testbit: nat -> nat -> bool +Nat.ltb: nat -> nat -> bool +Nat.leb: nat -> nat -> bool +Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat +bool_ind: forall P : bool -> Prop, P true -> P false -> forall b : bool, P b +bool_rec: forall P : bool -> Set, P true -> P false -> forall b : bool, P b eq_true_rec: forall P : bool -> Set, P true -> forall b : bool, eq_true b -> P b -is_true: bool -> Prop -eq_true_ind_r: - forall (P : bool -> Prop) (b : bool), P b -> eq_true b -> P true -eq_true_rec_r: - forall (P : bool -> Set) (b : bool), P b -> eq_true b -> P true +eq_true_ind: + forall P : bool -> Prop, P true -> forall b : bool, eq_true b -> P b eq_true_rect_r: forall (P : bool -> Type) (b : bool), P b -> eq_true b -> P true -BoolSpec: Prop -> Prop -> bool -> Prop +eq_true_rec_r: + forall (P : bool -> Set) (b : bool), P b -> eq_true b -> P true +eq_true_rect: + forall P : bool -> Type, P true -> forall b : bool, eq_true b -> P b +bool_rect: forall P : bool -> Type, P true -> P false -> forall b : bool, P b +eq_true_ind_r: + forall (P : bool -> Prop) (b : bool), P b -> eq_true b -> P true +andb_true_intro: + forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true +andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true BoolSpec_ind: forall (P Q : Prop) (P0 : bool -> Prop), (P -> P0 true) -> (Q -> P0 false) -> forall b : bool, BoolSpec P Q b -> P0 b -Nat.eqb: nat -> nat -> bool -Nat.leb: nat -> nat -> bool -Nat.ltb: nat -> nat -> bool -Nat.even: nat -> bool -Nat.odd: nat -> bool -Nat.testbit: nat -> nat -> bool -Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat bool_choice: forall (S : Set) (R1 R2 : S -> Prop), (forall x : S, {R1 x} + {R2 x}) -> {f : S -> bool | forall x : S, f x = true /\ R1 x \/ f x = false /\ R2 x} -eq_S: forall x y : nat, x = y -> S x = S y -f_equal_nat: forall (B : Type) (f : nat -> B) (x y : nat), x = y -> f x = f y -f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y +mult_n_O: forall n : nat, 0 = n * 0 +plus_O_n: forall n : nat, 0 + n = n +plus_n_O: forall n : nat, n = n + 0 +n_Sn: forall n : nat, n <> S n pred_Sn: forall n : nat, n = Nat.pred (S n) +O_S: forall n : nat, 0 <> S n +f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y +eq_S: forall x y : nat, x = y -> S x = S y eq_add_S: forall n m : nat, S n = S m -> n = m +min_r: forall n m : nat, m <= n -> Nat.min n m = m +min_l: forall n m : nat, n <= m -> Nat.min n m = n +max_r: forall n m : nat, n <= m -> Nat.max n m = m +max_l: forall n m : nat, m <= n -> Nat.max n m = n +plus_Sn_m: forall n m : nat, S n + m = S (n + m) +plus_n_Sm: forall n m : nat, S (n + m) = n + S m +f_equal_nat: forall (B : Type) (f : nat -> B) (x y : nat), x = y -> f x = f y not_eq_S: forall n m : nat, n <> m -> S n <> S m -O_S: forall n : nat, 0 <> S n -n_Sn: forall n : nat, n <> S n +mult_n_Sm: forall n m : nat, n * m + n = n * S m f_equal2_plus: forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2 +f_equal2_mult: + forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 * x2 = y1 * y2 f_equal2_nat: forall (B : Type) (f : nat -> nat -> B) (x1 y1 x2 y2 : nat), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2 -plus_n_O: forall n : nat, n = n + 0 -plus_O_n: forall n : nat, 0 + n = n -plus_n_Sm: forall n m : nat, S (n + m) = n + S m -plus_Sn_m: forall n m : nat, S n + m = S (n + m) -f_equal2_mult: - forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 * x2 = y1 * y2 -mult_n_O: forall n : nat, 0 = n * 0 -mult_n_Sm: forall n m : nat, n * m + n = n * S m -max_l: forall n m : nat, m <= n -> Nat.max n m = n -max_r: forall n m : nat, n <= m -> Nat.max n m = m -min_l: forall n m : nat, n <= m -> Nat.min n m = n -min_r: forall n m : nat, m <= n -> Nat.min n m = m -andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true andb_true_intro: forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true +andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true bool_choice: forall (S : Set) (R1 R2 : S -> Prop), (forall x : S, {R1 x} + {R2 x}) -> {f : S -> bool | forall x : S, f x = true /\ R1 x \/ f x = false /\ R2 x} -andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true andb_true_intro: forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true -h': newdef n <> n +andb_prop: forall a b : bool, (a && b)%bool = true -> a = true /\ b = true h: n <> newdef n h': newdef n <> n h: n <> newdef n +h': newdef n <> n h: n <> newdef n h: n <> newdef n -h': ~ P n h: P n h': ~ P n h: P n h': ~ P n h: P n +h': ~ P n h: P n h: P n diff --git a/test-suite/output/SearchHead.out b/test-suite/output/SearchHead.out index 0d5924ec6..7038eac22 100644 --- a/test-suite/output/SearchHead.out +++ b/test-suite/output/SearchHead.out @@ -1,39 +1,39 @@ le_n: forall n : nat, n <= n +le_0_n: forall n : nat, 0 <= n le_S: forall n m : nat, n <= m -> n <= S m le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m -le_S_n: forall n m : nat, S n <= S m -> n <= m -le_0_n: forall n : nat, 0 <= n le_n_S: forall n m : nat, n <= m -> S n <= S m -true: bool +le_S_n: forall n m : nat, S n <= S m -> n <= m false: bool -andb: bool -> bool -> bool -orb: bool -> bool -> bool +true: bool +negb: bool -> bool implb: bool -> bool -> bool +orb: bool -> bool -> bool +andb: bool -> bool -> bool xorb: bool -> bool -> bool -negb: bool -> bool -Nat.eqb: nat -> nat -> bool -Nat.leb: nat -> nat -> bool -Nat.ltb: nat -> nat -> bool Nat.even: nat -> bool Nat.odd: nat -> bool +Nat.leb: nat -> nat -> bool +Nat.ltb: nat -> nat -> bool Nat.testbit: nat -> nat -> bool -eq_S: forall x y : nat, x = y -> S x = S y -f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y +Nat.eqb: nat -> nat -> bool +mult_n_O: forall n : nat, 0 = n * 0 +plus_O_n: forall n : nat, 0 + n = n +plus_n_O: forall n : nat, n = n + 0 pred_Sn: forall n : nat, n = Nat.pred (S n) +f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y eq_add_S: forall n m : nat, S n = S m -> n = m -f_equal2_plus: - forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2 -plus_n_O: forall n : nat, n = n + 0 -plus_O_n: forall n : nat, 0 + n = n +eq_S: forall x y : nat, x = y -> S x = S y +max_r: forall n m : nat, n <= m -> Nat.max n m = m +max_l: forall n m : nat, m <= n -> Nat.max n m = n +min_r: forall n m : nat, m <= n -> Nat.min n m = m +min_l: forall n m : nat, n <= m -> Nat.min n m = n plus_n_Sm: forall n m : nat, S (n + m) = n + S m plus_Sn_m: forall n m : nat, S n + m = S (n + m) +mult_n_Sm: forall n m : nat, n * m + n = n * S m +f_equal2_plus: + forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2 f_equal2_mult: forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 * x2 = y1 * y2 -mult_n_O: forall n : nat, 0 = n * 0 -mult_n_Sm: forall n m : nat, n * m + n = n * S m -max_l: forall n m : nat, m <= n -> Nat.max n m = n -max_r: forall n m : nat, n <= m -> Nat.max n m = m -min_l: forall n m : nat, n <= m -> Nat.min n m = n -min_r: forall n m : nat, m <= n -> Nat.min n m = m h: newdef n h: P n diff --git a/test-suite/output/SearchPattern.out b/test-suite/output/SearchPattern.out index f3c12effc..45ff5e73b 100644 --- a/test-suite/output/SearchPattern.out +++ b/test-suite/output/SearchPattern.out @@ -1,77 +1,77 @@ -true: bool false: bool -andb: bool -> bool -> bool -orb: bool -> bool -> bool +true: bool +negb: bool -> bool implb: bool -> bool -> bool +orb: bool -> bool -> bool +andb: bool -> bool -> bool xorb: bool -> bool -> bool -negb: bool -> bool -Nat.eqb: nat -> nat -> bool -Nat.leb: nat -> nat -> bool -Nat.ltb: nat -> nat -> bool Nat.even: nat -> bool Nat.odd: nat -> bool +Nat.leb: nat -> nat -> bool +Nat.ltb: nat -> nat -> bool Nat.testbit: nat -> nat -> bool -O: nat -S: nat -> nat -length: forall A : Type, list A -> nat +Nat.eqb: nat -> nat -> bool +Nat.two: nat Nat.zero: nat Nat.one: nat -Nat.two: nat -Nat.succ: nat -> nat +O: nat +Nat.double: nat -> nat +Nat.sqrt: nat -> nat +Nat.div2: nat -> nat +Nat.log2: nat -> nat Nat.pred: nat -> nat +Nat.square: nat -> nat +S: nat -> nat +Nat.succ: nat -> nat +Nat.ldiff: nat -> nat -> nat Nat.add: nat -> nat -> nat -Nat.double: nat -> nat +Nat.lor: nat -> nat -> nat +Nat.lxor: nat -> nat -> nat +Nat.land: nat -> nat -> nat Nat.mul: nat -> nat -> nat Nat.sub: nat -> nat -> nat Nat.max: nat -> nat -> nat -Nat.min: nat -> nat -> nat -Nat.pow: nat -> nat -> nat Nat.div: nat -> nat -> nat +Nat.pow: nat -> nat -> nat +Nat.min: nat -> nat -> nat Nat.modulo: nat -> nat -> nat Nat.gcd: nat -> nat -> nat -Nat.square: nat -> nat Nat.sqrt_iter: nat -> nat -> nat -> nat -> nat -Nat.sqrt: nat -> nat Nat.log2_iter: nat -> nat -> nat -> nat -> nat -Nat.log2: nat -> nat -Nat.div2: nat -> nat +length: forall A : Type, list A -> nat Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat -Nat.land: nat -> nat -> nat -Nat.lor: nat -> nat -> nat +Nat.div2: nat -> nat +Nat.sqrt: nat -> nat +Nat.log2: nat -> nat +Nat.double: nat -> nat +Nat.pred: nat -> nat +Nat.square: nat -> nat +Nat.succ: nat -> nat +S: nat -> nat Nat.ldiff: nat -> nat -> nat +Nat.pow: nat -> nat -> nat +Nat.land: nat -> nat -> nat Nat.lxor: nat -> nat -> nat -S: nat -> nat -Nat.succ: nat -> nat -Nat.pred: nat -> nat -Nat.add: nat -> nat -> nat -Nat.double: nat -> nat +Nat.div: nat -> nat -> nat Nat.mul: nat -> nat -> nat -Nat.sub: nat -> nat -> nat -Nat.max: nat -> nat -> nat Nat.min: nat -> nat -> nat -Nat.pow: nat -> nat -> nat -Nat.div: nat -> nat -> nat Nat.modulo: nat -> nat -> nat +Nat.sub: nat -> nat -> nat +Nat.lor: nat -> nat -> nat Nat.gcd: nat -> nat -> nat -Nat.square: nat -> nat -Nat.sqrt_iter: nat -> nat -> nat -> nat -> nat -Nat.sqrt: nat -> nat +Nat.max: nat -> nat -> nat +Nat.add: nat -> nat -> nat Nat.log2_iter: nat -> nat -> nat -> nat -> nat -Nat.log2: nat -> nat -Nat.div2: nat -> nat +Nat.sqrt_iter: nat -> nat -> nat -> nat -> nat Nat.bitwise: (bool -> bool -> bool) -> nat -> nat -> nat -> nat -Nat.land: nat -> nat -> nat -Nat.lor: nat -> nat -> nat -Nat.ldiff: nat -> nat -> nat -Nat.lxor: nat -> nat -> nat mult_n_Sm: forall n m : nat, n * m + n = n * S m -identity_refl: forall (A : Type) (a : A), identity a a iff_refl: forall A : Prop, A <-> A +le_n: forall n : nat, n <= n +identity_refl: forall (A : Type) (a : A), identity a a eq_refl: forall (A : Type) (x : A), x = x Nat.divmod: nat -> nat -> nat -> nat -> nat * nat -le_n: forall n : nat, n <= n -pair: forall A B : Type, A -> B -> A * B conj: forall A B : Prop, A -> B -> A /\ B +pair: forall A B : Type, A -> B -> A * B Nat.divmod: nat -> nat -> nat -> nat -> nat * nat h: n <> newdef n h: n <> newdef n |