aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-27 22:46:58 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-27 22:46:58 +0000
commit6114632b3acd8775a75838ec856ec4117c581855 (patch)
tree8555c7300b1a61aaddf6f9e895be736816c8642e
parent6d111b2d517e327ba9cf317556760c2c8e828310 (diff)
For more uniformity, use implicits in FSetAVL
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10600 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--theories/FSets/FSetAVL.v269
1 files changed, 135 insertions, 134 deletions
diff --git a/theories/FSets/FSetAVL.v b/theories/FSets/FSetAVL.v
index 6f0ea32a5..db2c94c2c 100644
--- a/theories/FSets/FSetAVL.v
+++ b/theories/FSets/FSetAVL.v
@@ -19,6 +19,9 @@
Require Import Recdef FSetInterface FSetList ZArith Int.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
Module Raw (Import I:Int)(X:OrderedType).
Module Import II:=MoreInt(I).
Open Scope Int_scope.
@@ -494,7 +497,7 @@ Qed.
Ltac omega_bal := match goal with
| H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] =>
- generalize (bal_height_1 l x r H H') (bal_height_2 l x r H H');
+ generalize (bal_height_1 x H H') (bal_height_2 x H H');
omega_max
end.
@@ -533,7 +536,7 @@ Qed.
Lemma add_avl : forall s x, avl s -> avl (add x s).
Proof.
- intros; generalize (add_avl_1 s x H); intuition.
+ intros; destruct (@add_avl_1 s x H); auto.
Qed.
Hint Resolve add_avl.
@@ -563,14 +566,14 @@ Proof.
(* lt_tree -> lt_tree (add ...) *)
red; red in H4.
intros.
- rewrite (add_in l x y0 H) in H0.
+ rewrite (add_in x y0 H) in H0.
intuition.
eauto.
inv bst; inv avl; apply bal_bst; auto.
(* gt_tree -> gt_tree (add ...) *)
red; red in H4.
intros.
- rewrite (add_in r x y0 H5) in H0.
+ rewrite (add_in x y0 H5) in H0.
intuition.
apply MX.lt_eq with x; auto.
Qed.
@@ -627,11 +630,11 @@ Proof.
join_tac.
split; simpl; auto.
- destruct (add_avl_1 r x H0).
+ destruct (add_avl_1 x H0).
avl_nns; omega_max.
split; auto.
set (l:=Node ll lx lr lh) in *.
- destruct (add_avl_1 l x H).
+ destruct (add_avl_1 x H).
simpl (height Leaf).
avl_nns; omega_max.
@@ -670,7 +673,7 @@ Qed.
Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r).
Proof.
- intros; generalize (join_avl_1 l x r H H0); intuition.
+ intros; destruct (@join_avl_1 l x r H H0); auto.
Qed.
Hint Resolve join_avl.
@@ -705,7 +708,7 @@ Proof.
apply bal_bst; auto.
clear Hrl Hlr H13 H14 H16 H17 z; intro; intros.
set (r:=Node rl rx rr rh) in *; clearbody r.
- rewrite (join_in lr x r y) in H13; auto.
+ rewrite (@join_in lr x r y) in H13; auto.
intuition.
apply MX.lt_eq with x; eauto.
eauto.
@@ -714,7 +717,7 @@ Proof.
apply bal_bst; auto.
clear Hrl Hlr H13 H14 H16 H17 z; intro; intros.
set (l:=Node ll lx lr lh) in *; clearbody l.
- rewrite (join_in l x rl y) in H13; auto.
+ rewrite (@join_in l x rl y) in H13; auto.
intuition.
apply MX.eq_lt with x; eauto.
eauto.
@@ -772,7 +775,7 @@ Qed.
Lemma remove_min_avl : forall l x r h, avl (Node l x r h) ->
avl (remove_min l x r)#1.
Proof.
- intros; generalize (remove_min_avl_1 l x r h H); intuition.
+ intros; destruct (@remove_min_avl_1 l x r h H); auto.
Qed.
Lemma remove_min_in : forall l x r h y, avl (Node l x r h) ->
@@ -783,7 +786,7 @@ Proof.
intuition_in.
(* l = Node *)
inversion_clear H.
- generalize (remove_min_avl ll lx lr lh H0).
+ generalize (remove_min_avl H0).
rewrite e0; simpl; intros.
rewrite bal_in; auto.
rewrite e0 in IHp;generalize (IHp lh y H0).
@@ -801,7 +804,7 @@ Proof.
apply bal_bst; auto.
apply (IHp lh); auto.
intro; intros.
- generalize (remove_min_in ll lx lr lh y H).
+ generalize (remove_min_in y H).
rewrite e0; simpl.
destruct 1.
apply H3; intuition.
@@ -816,10 +819,9 @@ Proof.
inversion_clear H; inversion_clear H0.
intro; intro.
generalize (IHp lh H1 H); clear H6 H7 IHp.
- generalize (remove_min_avl ll lx lr lh H).
- generalize (remove_min_in ll lx lr lh m H).
+ generalize (remove_min_in m H)(remove_min_avl H).
rewrite e0; simpl; intros.
- rewrite (bal_in l' x r y H7 H5) in H0.
+ rewrite (bal_in x y H7 H5) in H0.
assert (In m (Node ll lx lr lh)) by (rewrite H6; auto); clear H6.
assert (X.lt m x) by order.
decompose [or] H0; order.
@@ -850,7 +852,7 @@ Proof.
split; auto; avl_nns; omega_max.
split; auto; avl_nns; simpl in *; omega_max.
destruct s1;try contradiction;clear y.
- generalize (remove_min_avl_1 l2 x2 r2 h2 H0).
+ generalize (remove_min_avl_1 H0).
rewrite e1; simpl; destruct 1.
split.
apply bal_avl; auto.
@@ -861,7 +863,7 @@ Qed.
Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 ->
-(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
Proof.
- intros; generalize (merge_avl_1 s1 s2 H H0 H1); intuition.
+ intros; destruct (@merge_avl_1 s1 s2 H H0 H1); auto.
Qed.
Lemma merge_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
@@ -873,8 +875,8 @@ Proof.
destruct s1;try contradiction;clear y.
replace s2' with ((remove_min l2 x2 r2)#1); [|rewrite e1; auto].
rewrite bal_in; auto.
- generalize (remove_min_avl l2 x2 r2 h2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 y0); rewrite e1; simpl; intro.
+ generalize (remove_min_avl H2); rewrite e1; simpl; auto.
+ generalize (remove_min_in y0 H2); rewrite e1; simpl; intro.
rewrite H3 ; intuition.
Qed.
@@ -885,11 +887,11 @@ Proof.
intros s1 s2; functional induction (merge s1 s2); subst;simpl in *; intros; auto.
destruct s1;try contradiction;clear y.
apply bal_bst; auto.
- generalize (remove_min_bst l2 x2 r2 h2); rewrite e1; simpl in *; auto.
+ generalize (remove_min_bst H1 H2); rewrite e1; simpl in *; auto.
intro; intro.
apply H3; auto.
- generalize (remove_min_in l2 x2 r2 h2 m); rewrite e1; simpl; intuition.
- generalize (remove_min_gt_tree l2 x2 r2 h2); rewrite e1; simpl; auto.
+ generalize (remove_min_in m H2); rewrite e1; simpl; intuition.
+ generalize (remove_min_gt_tree H1 H2); rewrite e1; simpl; auto.
Qed.
@@ -920,7 +922,7 @@ Proof.
omega_bal.
(* EQ *)
inv avl.
- generalize (merge_avl_1 l r H0 H1 H2).
+ generalize (merge_avl_1 H0 H1 H2).
intuition omega_max.
(* GT *)
inv avl.
@@ -933,7 +935,7 @@ Qed.
Lemma remove_avl : forall s x, avl s -> avl (remove x s).
Proof.
- intros; generalize (remove_avl_1 s x H); intuition.
+ intros; destruct (@remove_avl_1 s x H); auto.
Qed.
Hint Resolve remove_avl.
@@ -964,7 +966,7 @@ Proof.
inv avl; inv bst.
apply bal_bst; auto.
intro; intro.
- rewrite (remove_in l x y0) in H; auto.
+ rewrite (remove_in x y0 H0) in H; auto.
destruct H; eauto.
(* EQ *)
inv avl; inv bst.
@@ -973,7 +975,7 @@ Proof.
inv avl; inv bst.
apply bal_bst; auto.
intro; intro.
- rewrite (remove_in r x y0) in H; auto.
+ rewrite (remove_in x y0 H5) in H; auto.
destruct H; eauto.
Qed.
@@ -1107,7 +1109,7 @@ Proof.
intros s1 s2; functional induction (concat s1 s2); subst;auto.
destruct s1;try contradiction;clear y.
intros; apply join_avl; auto.
- generalize (remove_min_avl l2 x2 r2 h2 H0); rewrite e1; simpl; auto.
+ generalize (remove_min_avl H0); rewrite e1; simpl; auto.
Qed.
Lemma concat_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
@@ -1117,11 +1119,11 @@ Proof.
intros s1 s2; functional induction (concat s1 s2); subst ;auto.
destruct s1;try contradiction;clear y.
intros; apply join_bst; auto.
- generalize (remove_min_bst l2 x2 r2 h2 H1 H2); rewrite e1; simpl; auto.
- generalize (remove_min_avl l2 x2 r2 h2 H2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 m H2); rewrite e1; simpl; auto.
+ generalize (remove_min_bst H1 H2); rewrite e1; simpl; auto.
+ generalize (remove_min_avl H2); rewrite e1; simpl; auto.
+ generalize (remove_min_in m H2); rewrite e1; simpl; auto.
destruct 1; intuition.
- generalize (remove_min_gt_tree l2 x2 r2 h2 H1 H2); rewrite e1; simpl; auto.
+ generalize (remove_min_gt_tree H1 H2); rewrite e1; simpl; auto.
Qed.
Lemma concat_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
@@ -1134,9 +1136,9 @@ Proof.
destruct s1;try contradiction;clear y;intuition.
inversion_clear H5.
destruct s1;try contradiction;clear y; intros.
- rewrite (join_in (Node s1_1 t s1_2 i) m s2' y H0).
- generalize (remove_min_avl l2 x2 r2 h2 H2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 y H2); rewrite e1; simpl.
+ rewrite (@join_in _ m s2' y H0).
+ generalize (remove_min_avl H2); rewrite e1; simpl; auto.
+ generalize (remove_min_in y H2); rewrite e1; simpl.
intro EQ; rewrite EQ; intuition.
Qed.
@@ -1194,7 +1196,7 @@ Proof.
(* GT *)
rewrite e1 in IHp;simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
rewrite join_in; auto.
- generalize (split_avl r x H5); rewrite e1; simpl; intuition.
+ generalize (split_avl x H5); rewrite e1; simpl; intuition.
rewrite (IHp y0 H1 H5); clear e1.
intuition; [ eauto | eauto | intuition_in ].
Qed.
@@ -1207,7 +1209,7 @@ Proof.
(* LT *)
rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
rewrite join_in; auto.
- generalize (split_avl l x H4); rewrite e1; simpl; intuition.
+ generalize (split_avl x H4); rewrite e1; simpl; intuition.
rewrite (IHp y0 H0 H4); clear IHp e0.
intuition; [ order | order | intuition_in ].
(* EQ *)
@@ -1245,18 +1247,18 @@ Proof.
rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1.
intuition.
apply join_bst; auto.
- generalize (split_avl l x H4); rewrite e1; simpl; intuition.
+ generalize (split_avl x H4); rewrite e1; simpl; intuition.
intro; intro.
- generalize (split_in_2 l x y0 H0 H4); rewrite e1; simpl; intuition.
+ generalize (split_in_2 x y0 H0 H4); rewrite e1; simpl; intuition.
(* EQ *)
simpl in *; inversion_clear 1; inversion_clear 1; intuition.
(* GT *)
rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1.
intuition.
apply join_bst; auto.
- generalize (split_avl r x H5); rewrite e1; simpl; intuition.
+ generalize (split_avl x H5); rewrite e1; simpl; intuition.
intro; intro.
- generalize (split_in_1 r x y0 H1 H5); rewrite e1; simpl; intuition.
+ generalize (split_in_1 x y0 H1 H5); rewrite e1; simpl; intuition.
Qed.
Lemma split_cardinal_1 : forall x s,
@@ -1267,7 +1269,7 @@ Proof.
romega with *.
romega with *.
rewrite e1 in IHp; simpl in *.
- generalize (join_cardinal l y rl); romega with *.
+ generalize (@join_cardinal l y rl); romega with *.
Qed.
Lemma split_cardinal_2 : forall x s,
@@ -1275,7 +1277,7 @@ Lemma split_cardinal_2 : forall x s,
Proof.
intros x s; functional induction split x s; simpl; auto.
rewrite e1 in IHp; simpl in *.
- generalize (join_cardinal rl y r); romega with *.
+ generalize (@join_cardinal rl y r); romega with *.
romega with *.
rewrite e1 in IHp; simpl in *; romega with *.
Qed.
@@ -1297,7 +1299,7 @@ Function inter (s1 s2 : t) { struct s1 } : t := match s1, s2 with
Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2).
Proof.
intros s1 s2; functional induction inter s1 s2; auto; intros A1 A2;
- generalize (split_avl _ x1 A2); rewrite e1; simpl; destruct 1;
+ generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
inv avl; auto.
Qed.
Hint Resolve inter_avl.
@@ -1308,13 +1310,13 @@ Proof.
intros s1 s2; functional induction inter s1 s2; intros B1 A1 B2 A2;
[intuition_in|intuition_in | | ];
set (r:=Node l2 x2 r2 h2) in *;
- generalize (split_avl _ x1 A2)(split_bst _ x1 B2 A2);
+ generalize (split_avl x1 A2)(split_bst x1 B2 A2);
rewrite e1; simpl; destruct 1; destruct 1;
inv avl; inv bst;
destruct IHt as (IHb1,IHi1); auto;
destruct IHt0 as (IHb2,IHi2); auto;
- destruct (distr_pair _ _ _ _ _ e1); clear e1;
- destruct (distr_pair _ _ _ _ _ H12); clear H12; split.
+ destruct (distr_pair e1); clear e1;
+ destruct (distr_pair H12); clear H12; split.
(* bst join *)
apply join_bst; auto; intro y; [rewrite IHi1|rewrite IHi2]; intuition.
(* In join *)
@@ -1338,13 +1340,13 @@ Qed.
Lemma inter_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
bst (inter s1 s2).
Proof.
- intros s1 s2 B1 A1 B2 A2; destruct (inter_bst_in s1 s2 B1 A1 B2 A2); auto.
+ intros s1 s2 B1 A1 B2 A2; destruct (inter_bst_in B1 A1 B2 A2); auto.
Qed.
Lemma inter_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
(In y (inter s1 s2) <-> In y s1 /\ In y s2).
Proof.
- intros s1 s2 y B1 A1 B2 A2; destruct (inter_bst_in s1 s2 B1 A1 B2 A2); auto.
+ intros s1 s2 y B1 A1 B2 A2; destruct (inter_bst_in B1 A1 B2 A2); auto.
Qed.
@@ -1364,7 +1366,7 @@ end.
Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2).
Proof.
intros s1 s2; functional induction diff s1 s2; auto; intros A1 A2;
- generalize (split_avl _ x1 A2); rewrite e1; simpl; destruct 1;
+ generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
inv avl; auto.
Qed.
Hint Resolve diff_avl.
@@ -1375,13 +1377,13 @@ Proof.
intros s1 s2; functional induction diff s1 s2; intros B1 A1 B2 A2;
[intuition_in|intuition_in | | ];
set (r:=Node l2 x2 r2 h2) in *;
- generalize (split_avl _ x1 A2)(split_bst _ x1 B2 A2);
+ generalize (split_avl x1 A2)(split_bst x1 B2 A2);
rewrite e1; simpl; destruct 1; destruct 1;
inv avl; inv bst;
destruct IHt as (IHb1,IHi1); auto;
destruct IHt0 as (IHb2,IHi2); auto;
- destruct (distr_pair _ _ _ _ _ e1); clear e1;
- destruct (distr_pair _ _ _ _ _ H12); clear H12; split.
+ destruct (distr_pair e1); clear e1;
+ destruct (distr_pair H12); clear H12; split.
(* bst concat *)
apply concat_bst; auto; intros y1 y2; rewrite IHi1, IHi2; intuition; order.
(* In concat *)
@@ -1406,13 +1408,13 @@ Qed.
Lemma diff_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
bst (diff s1 s2).
Proof.
- intros s1 s2 B1 A1 B2 A2; destruct (diff_bst_in s1 s2 B1 A1 B2 A2); auto.
+ intros s1 s2 B1 A1 B2 A2; destruct (diff_bst_in B1 A1 B2 A2); auto.
Qed.
Lemma diff_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
(In y (diff s1 s2) <-> In y s1 /\ ~In y s2).
Proof.
- intros s1 s2 y B1 A1 B2 A2; destruct (diff_bst_in s1 s2 B1 A1 B2 A2); auto.
+ intros s1 s2 y B1 A1 B2 A2; destruct (diff_bst_in B1 A1 B2 A2); auto.
Qed.
@@ -1455,9 +1457,9 @@ Lemma union_avl : forall s,
Proof.
intros s; functional induction union s;
simpl fst in *; simpl snd in *; auto.
- intros A1 A2; generalize (split_avl _ x1 A2); rewrite e2; simpl.
+ intros A1 A2; generalize (split_avl x1 A2); rewrite e2; simpl.
inv avl; destruct 1; auto.
- intros A1 A2; generalize (split_avl _ x2 A1); rewrite e2; simpl.
+ intros A1 A2; generalize (split_avl x2 A1); rewrite e2; simpl.
inv avl; destruct 1; auto.
Qed.
Hint Resolve union_avl.
@@ -1473,13 +1475,13 @@ Proof.
intuition_in.
(* add x2 s#1 *)
inv avl.
- rewrite (height_0 _ H); [ | avl_nn l2; omega_max].
- rewrite (height_0 _ H0); [ | avl_nn r2; omega_max].
+ rewrite (height_0 H); [ | avl_nn l2; omega_max].
+ rewrite (height_0 H0); [ | avl_nn r2; omega_max].
rewrite add_in; auto; intuition_in.
(* join (union (l1,l2')) x1 (union (r1,r2'#2)) *)
generalize
- (split_avl _ x1 A2) (split_bst _ x1 B2 A2)
- (split_in_1 _ x1 y B2 A2) (split_in_2 _ x1 y B2 A2).
+ (split_avl x1 A2) (split_bst x1 B2 A2)
+ (split_in_1 x1 y B2 A2) (split_in_2 x1 y B2 A2).
rewrite e2; simpl.
destruct 1; destruct 1; inv avl; inv bst.
rewrite join_in; auto.
@@ -1489,13 +1491,13 @@ Proof.
case (X.compare y x1); intuition_in.
(* add x1 s#2 *)
inv avl.
- rewrite (height_0 _ H3); [ | avl_nn l1; omega_max].
- rewrite (height_0 _ H4); [ | avl_nn r1; omega_max].
+ rewrite (height_0 H3); [ | avl_nn l1; omega_max].
+ rewrite (height_0 H4); [ | avl_nn r1; omega_max].
rewrite add_in; auto; intuition_in.
(* join (union (l1',l2)) x1 (union (r1'#2,r2)) *)
generalize
- (split_avl _ x2 A1) (split_bst _ x2 B1 A1)
- (split_in_1 _ x2 y B1 A1) (split_in_2 _ x2 y B1 A1).
+ (split_avl x2 A1) (split_bst x2 B1 A1)
+ (split_in_1 x2 y B1 A1) (split_in_2 x2 y B1 A1).
rewrite e2; simpl.
destruct 1; destruct 1; inv avl; inv bst.
rewrite join_in; auto.
@@ -1512,10 +1514,10 @@ Proof.
simpl fst in *; simpl snd in *; try clear e0 e1;
try apply add_bst; auto.
(* join (union (l1,l2')) x1 (union (r1,r2'#2)) *)
- generalize (split_avl _ x1 A2) (split_bst _ x1 B2 A2).
+ generalize (split_avl x1 A2) (split_bst x1 B2 A2).
rewrite e2; simpl.
destruct 1; destruct 1.
- destruct (distr_pair _ _ _ _ _ e2) as (L,R); clear e2.
+ destruct (distr_pair e2) as (L,R); clear e2.
inv bst; inv avl.
apply join_bst; auto.
intro y; rewrite union_in; auto; simpl.
@@ -1523,10 +1525,10 @@ Proof.
intro y; rewrite union_in; auto; simpl.
rewrite <- R, split_in_2; auto; intuition_in.
(* join (union (l1',l2)) x1 (union (r1'#2,r2)) *)
- generalize (split_avl _ x2 A1) (split_bst _ x2 B1 A1).
+ generalize (split_avl x2 A1) (split_bst x2 B1 A1).
rewrite e2; simpl.
destruct 1; destruct 1.
- destruct (distr_pair _ _ _ _ _ e2) as (L,R); clear e2.
+ destruct (distr_pair e2) as (L,R); clear e2.
inv bst; inv avl.
apply join_bst; auto.
intro y; rewrite union_in; auto; simpl.
@@ -1919,7 +1921,7 @@ Module L := FSetList.Raw X.
Fixpoint fold (A : Type) (f : elt -> A -> A)(s : tree) {struct s} : A -> A :=
fun a => match s with
| Leaf => a
- | Node l x r _ => fold A f r (f x (fold A f l a))
+ | Node l x r _ => fold f r (f x (fold f l a))
end.
Implicit Arguments fold [A].
@@ -2239,7 +2241,7 @@ Proof.
apply l_eq_cons; auto.
inversion H; subst; clear H.
inversion H0; subst; clear H0.
- destruct (cons_1 r1 e1); destruct (cons_1 r2 e2); auto.
+ destruct (@cons_1 r1 e1); destruct (@cons_1 r2 e2); auto.
rewrite <- H0; rewrite <- H3; auto.
Qed.
@@ -2252,7 +2254,7 @@ Proof.
apply L.lt_cons_eq; auto.
inversion H; subst; clear H.
inversion H0; subst; clear H0.
- destruct (cons_1 r1 e1); destruct (cons_1 r2 e2); auto.
+ destruct (@cons_1 r1 e1); destruct (@cons_1 r2 e2); auto.
rewrite <- H0; rewrite <- H3; auto.
Qed.
@@ -2265,7 +2267,7 @@ Proof.
apply L.lt_cons_eq; auto.
inversion H; subst; clear H.
inversion H0; subst; clear H0.
- destruct (cons_1 r1 e1); destruct (cons_1 r2 e2); auto.
+ destruct (@cons_1 r1 e1); destruct (@cons_1 r2 e2); auto.
rewrite <- H0; rewrite <- H3; auto.
Qed.
@@ -2273,33 +2275,33 @@ Lemma compare_Eq : forall s1 s2, bst s1 -> bst s2 ->
compare s1 s2 = Eq -> Equal s1 s2.
Proof.
unfold compare; intros.
- destruct (cons_1 s1 End) as (S1,E1); auto; try inversion 2.
- destruct (cons_1 s2 End) as (S2,E2); auto; try inversion 2.
+ destruct (@cons_1 s1 End) as (S1,E1); auto; try inversion 2.
+ destruct (@cons_1 s2 End) as (S2,E2); auto; try inversion 2.
simpl in *; rewrite <- app_nil_end in *.
apply L_eq_eq; rewrite <-E1, <-E2.
- apply (compare_aux_Eq (cons s1 End, cons s2 End)); simpl; auto.
+ apply (@compare_aux_Eq (cons s1 End, cons s2 End)); simpl; auto.
Qed.
Lemma compare_Lt : forall s1 s2, bst s1 -> bst s2 ->
compare s1 s2 = Lt -> lt s1 s2.
Proof.
unfold compare; intros.
- destruct (cons_1 s1 End) as (S1,E1); auto; try inversion 2.
- destruct (cons_1 s2 End) as (S2,E2); auto; try inversion 2.
+ destruct (@cons_1 s1 End) as (S1,E1); auto; try inversion 2.
+ destruct (@cons_1 s2 End) as (S2,E2); auto; try inversion 2.
simpl in *; rewrite <- app_nil_end in *.
red; rewrite <- E1, <- E2.
- apply (compare_aux_Lt (cons s1 End, cons s2 End)); simpl; auto.
+ apply (@compare_aux_Lt (cons s1 End, cons s2 End)); simpl; auto.
Qed.
Lemma compare_Gt : forall s1 s2, bst s1 -> bst s2 ->
compare s1 s2 = Gt -> lt s2 s1.
Proof.
unfold compare; intros.
- destruct (cons_1 s1 End) as (S1,E1); auto; try inversion 2.
- destruct (cons_1 s2 End) as (S2,E2); auto; try inversion 2.
+ destruct (@cons_1 s1 End) as (S1,E1); auto; try inversion 2.
+ destruct (@cons_1 s2 End) as (S2,E2); auto; try inversion 2.
simpl in *; rewrite <- app_nil_end in *.
red; rewrite <- E1, <- E2.
- apply (compare_aux_Gt (cons s1 End, cons s2 End)); simpl; auto.
+ apply (@compare_aux_Gt (cons s1 End, cons s2 End)); simpl; auto.
Qed.
Close Scope nat_scope.
@@ -2316,17 +2318,17 @@ Lemma equal_1 : forall s1 s2, bst s1 -> bst s2 ->
Equal s1 s2 -> equal s1 s2 = true.
Proof.
unfold equal; intros s1 s2 B1 B2 E.
-generalize (compare_Lt _ _ B1 B2)(compare_Gt _ _ B1 B2).
+generalize (compare_Lt B1 B2)(compare_Gt B1 B2).
destruct (compare s1 s2); auto; intros.
-elim (lt_not_eq _ _ B1 B2 (H (refl_equal Lt)) E); auto.
-elim (lt_not_eq _ _ B2 B1 (H0 (refl_equal Gt)) (eq_sym _ _ E)); auto.
+elim (lt_not_eq B1 B2 (H (refl_equal Lt)) E); auto.
+elim (lt_not_eq B2 B1 (H0 (refl_equal Gt)) (eq_sym E)); auto.
Qed.
Lemma equal_2 : forall s1 s2, bst s1 -> bst s2 ->
equal s1 s2 = true -> Equal s1 s2.
Proof.
unfold equal; intros s1 s2 B1 B2 E.
-generalize (compare_Eq _ _ B1 B2);
+generalize (compare_Eq B1 B2);
destruct compare; auto; discriminate.
Qed.
@@ -2376,7 +2378,7 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module Raw := Raw I X.
Record bbst : Set := Bbst {this :> Raw.t; is_bst : Raw.bst this; is_avl: Raw.avl this}.
- Definition t := bbst.
+ Definition t := bbst.
Definition elt := E.t.
Definition In (x : elt) (s : t) : Prop := Raw.In x s.
@@ -2387,29 +2389,29 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x.
Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s.
- Proof. intro s; exact (Raw.In_1 s). Qed.
+ Proof. intro s; exact (@Raw.In_1 s). Qed.
Definition mem (x:elt)(s:t) : bool := Raw.mem x s.
- Definition empty : t := Bbst _ Raw.empty_bst Raw.empty_avl.
+ Definition empty : t := Bbst Raw.empty_bst Raw.empty_avl.
Definition is_empty (s:t) : bool := Raw.is_empty s.
- Definition singleton (x:elt) : t := Bbst _ (Raw.singleton_bst x) (Raw.singleton_avl x).
+ Definition singleton (x:elt) : t := Bbst (Raw.singleton_bst x) (Raw.singleton_avl x).
Definition add (x:elt)(s:t) : t :=
- Bbst _ (Raw.add_bst s x (is_bst s) (is_avl s))
- (Raw.add_avl s x (is_avl s)).
+ Bbst (Raw.add_bst x (is_bst s) (is_avl s))
+ (Raw.add_avl x (is_avl s)).
Definition remove (x:elt)(s:t) : t :=
- Bbst _ (Raw.remove_bst s x (is_bst s) (is_avl s))
- (Raw.remove_avl s x (is_avl s)).
+ Bbst (Raw.remove_bst x (is_bst s) (is_avl s))
+ (Raw.remove_avl x (is_avl s)).
Definition inter (s s':t) : t :=
- Bbst _ (Raw.inter_bst _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (Raw.inter_avl _ _ (is_avl s) (is_avl s')).
+ Bbst (Raw.inter_bst (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
+ (Raw.inter_avl (is_avl s) (is_avl s')).
Definition union (s s':t) : t :=
let (s,b,a) := s in let (s',b',a') := s' in
- Bbst _ (Raw.union_bst (s,s') b a b' a')
- (Raw.union_avl (s,s') a a').
+ Bbst (@Raw.union_bst (s,s') b a b' a')
+ (@Raw.union_avl (s,s') a a').
Definition diff (s s':t) : t :=
- Bbst _ (Raw.diff_bst _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (Raw.diff_avl _ _ (is_avl s) (is_avl s')).
+ Bbst (Raw.diff_bst (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
+ (Raw.diff_avl (is_avl s) (is_avl s')).
Definition elements (s:t) : list elt := Raw.elements s.
Definition min_elt (s:t) : option elt := Raw.min_elt s.
Definition max_elt (s:t) : option elt := Raw.max_elt s.
@@ -2417,16 +2419,16 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := Raw.fold f s.
Definition cardinal (s:t) : nat := Raw.cardinal s.
Definition filter (f : elt -> bool) (s:t) : t :=
- Bbst _ (Raw.filter_bst f _ (is_bst s) (is_avl s))
- (Raw.filter_avl f _ (is_avl s)).
+ Bbst (Raw.filter_bst f (is_bst s) (is_avl s))
+ (Raw.filter_avl f (is_avl s)).
Definition for_all (f : elt -> bool) (s:t) : bool := Raw.for_all f s.
Definition exists_ (f : elt -> bool) (s:t) : bool := Raw.exists_ f s.
Definition partition (f : elt -> bool) (s:t) : t * t :=
let p := Raw.partition f s in
- (Bbst (fst p) (Raw.partition_bst_1 f _ (is_bst s) (is_avl s))
- (Raw.partition_avl_1 f _ (is_avl s)),
- Bbst (snd p) (Raw.partition_bst_2 f _ (is_bst s) (is_avl s))
- (Raw.partition_avl_2 f _ (is_avl s))).
+ (@Bbst (fst p) (Raw.partition_bst_1 f (is_bst s) (is_avl s))
+ (Raw.partition_avl_1 f (is_avl s)),
+ @Bbst (snd p) (Raw.partition_bst_2 f (is_bst s) (is_avl s))
+ (Raw.partition_avl_2 f (is_avl s))).
Definition equal (s s':t) : bool := Raw.equal s s'.
Definition subset (s s':t) : bool := Raw.subset (s.(this),s'.(this)).
@@ -2437,8 +2439,7 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Definition compare (s s':t) : Compare lt eq s s'.
Proof.
intros (s,b,a) (s',b',a').
- generalize (Raw.compare_Eq _ _ b b') (Raw.compare_Lt _ _ b b')
- (Raw.compare_Gt _ _ b b').
+ generalize (Raw.compare_Eq b b') (Raw.compare_Lt b b') (Raw.compare_Gt b b').
destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
@@ -2450,14 +2451,14 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Hint Resolve is_bst is_avl.
Lemma mem_1 : In x s -> mem x s = true.
- Proof. exact (Raw.mem_1 s x (is_bst s)). Qed.
+ Proof. exact (Raw.mem_1 (is_bst s)). Qed.
Lemma mem_2 : mem x s = true -> In x s.
- Proof. exact (Raw.mem_2 s x). Qed.
+ Proof. exact (@Raw.mem_2 s x). Qed.
Lemma equal_1 : Equal s s' -> equal s s' = true.
- Proof. exact (Raw.equal_1 s s' (is_bst s) (is_bst s')). Qed.
+ Proof. exact (Raw.equal_1 (is_bst s) (is_bst s')). Qed.
Lemma equal_2 : equal s s' = true -> Equal s s'.
- Proof. exact (Raw.equal_2 s s' (is_bst s) (is_bst s')). Qed.
+ Proof. exact (Raw.equal_2 (is_bst s) (is_bst s')). Qed.
Lemma subset_1 : Subset s s' -> subset s s' = true.
Proof.
@@ -2473,9 +2474,9 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Proof. exact Raw.empty_1. Qed.
Lemma is_empty_1 : Empty s -> is_empty s = true.
- Proof. exact (Raw.is_empty_1 s). Qed.
+ Proof. exact (@Raw.is_empty_1 s). Qed.
Lemma is_empty_2 : is_empty s = true -> Empty s.
- Proof. exact (Raw.is_empty_2 s). Qed.
+ Proof. exact (@Raw.is_empty_2 s). Qed.
Lemma add_1 : E.eq x y -> In y (add x s).
Proof.
@@ -2509,9 +2510,9 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Qed.
Lemma singleton_1 : In y (singleton x) -> E.eq x y.
- Proof. exact (Raw.singleton_1 x y). Qed.
+ Proof. exact (@Raw.singleton_1 x y). Qed.
Lemma singleton_2 : E.eq x y -> In y (singleton x).
- Proof. exact (Raw.singleton_2 x y). Qed.
+ Proof. exact (@Raw.singleton_2 x y). Qed.
Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
Proof.
@@ -2562,7 +2563,7 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Qed.
Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
- fold A f s i = fold_left (fun a e => f e a) (elements s) i.
+ fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
unfold fold, elements; intros; apply Raw.fold_1; auto.
Qed.
@@ -2591,14 +2592,14 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Qed.
Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true.
- Proof. exact (Raw.for_all_1 f s). Qed.
+ Proof. exact (@Raw.for_all_1 f s). Qed.
Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s.
- Proof. exact (Raw.for_all_2 f s). Qed.
+ Proof. exact (@Raw.for_all_2 f s). Qed.
Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
- Proof. exact (Raw.exists_1 f s). Qed.
+ Proof. exact (@Raw.exists_1 f s). Qed.
Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
- Proof. exact (Raw.exists_2 f s). Qed.
+ Proof. exact (@Raw.exists_2 f s). Qed.
Lemma partition_1 : compat_bool E.eq f ->
Equal (fst (partition f s)) (filter f s).
@@ -2633,29 +2634,29 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Qed.
Lemma elements_3 : sort E.lt (elements s).
- Proof. exact (Raw.elements_sort _ (is_bst s)). Qed.
+ Proof. exact (Raw.elements_sort (is_bst s)). Qed.
Lemma elements_3w : NoDupA E.eq (elements s).
- Proof. exact (Raw.elements_nodup _ (is_bst s)). Qed.
+ Proof. exact (Raw.elements_nodup (is_bst s)). Qed.
Lemma min_elt_1 : min_elt s = Some x -> In x s.
- Proof. exact (Raw.min_elt_1 s x). Qed.
+ Proof. exact (@Raw.min_elt_1 s x). Qed.
Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
- Proof. exact (Raw.min_elt_2 s x y (is_bst s)). Qed.
+ Proof. exact (@Raw.min_elt_2 s x y (is_bst s)). Qed.
Lemma min_elt_3 : min_elt s = None -> Empty s.
- Proof. exact (Raw.min_elt_3 s). Qed.
+ Proof. exact (@Raw.min_elt_3 s). Qed.
Lemma max_elt_1 : max_elt s = Some x -> In x s.
- Proof. exact (Raw.max_elt_1 s x). Qed.
+ Proof. exact (@Raw.max_elt_1 s x). Qed.
Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
- Proof. exact (Raw.max_elt_2 s x y (is_bst s)). Qed.
+ Proof. exact (@Raw.max_elt_2 s x y (is_bst s)). Qed.
Lemma max_elt_3 : max_elt s = None -> Empty s.
- Proof. exact (Raw.max_elt_3 s). Qed.
+ Proof. exact (@Raw.max_elt_3 s). Qed.
Lemma choose_1 : choose s = Some x -> In x s.
- Proof. exact (Raw.choose_1 s x). Qed.
+ Proof. exact (@Raw.choose_1 s x). Qed.
Lemma choose_2 : choose s = None -> Empty s.
- Proof. exact (Raw.choose_2 s). Qed.
+ Proof. exact (@Raw.choose_2 s). Qed.
Lemma choose_equal: (equal s s')=true ->
match choose s, choose s' with
@@ -2673,14 +2674,14 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Lemma eq_refl : eq s s.
Proof. exact (Raw.eq_refl s). Qed.
Lemma eq_sym : eq s s' -> eq s' s.
- Proof. exact (Raw.eq_sym s s'). Qed.
+ Proof. exact (@Raw.eq_sym s s'). Qed.
Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''.
- Proof. exact (Raw.eq_trans s s' s''). Qed.
+ Proof. exact (@Raw.eq_trans s s' s''). Qed.
Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''.
- Proof. exact (Raw.lt_trans s s' s''). Qed.
+ Proof. exact (@Raw.lt_trans s s' s''). Qed.
Lemma lt_not_eq : lt s s' -> ~eq s s'.
- Proof. exact (Raw.lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
+ Proof. exact (@Raw.lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
End Specs.
End IntMake.