diff options
author | Xavier Clerc <xavier.clerc@inria.fr> | 2014-09-25 11:14:27 +0200 |
---|---|---|
committer | Xavier Clerc <xavier.clerc@inria.fr> | 2014-09-25 11:14:27 +0200 |
commit | 5ee96761e3cd19236f446a11d178a31328b325ec (patch) | |
tree | 568e3a3e523e0ab65743e28e0589ec47dc11ad38 | |
parent | d5b7c4b6e0efa998a35182cb1dbf6c309a82ba5a (diff) |
Add several reproduction files for bugs.
-rw-r--r-- | test-suite/bugs/closed/3647.v | 652 | ||||
-rw-r--r-- | test-suite/bugs/opened/3509.v | 18 | ||||
-rw-r--r-- | test-suite/bugs/opened/3510.v | 34 | ||||
-rw-r--r-- | test-suite/bugs/opened/3554.v | 1 | ||||
-rw-r--r-- | test-suite/bugs/opened/3562.v | 2 | ||||
-rw-r--r-- | test-suite/bugs/opened/3566.v | 21 | ||||
-rw-r--r-- | test-suite/bugs/opened/3618.v | 100 | ||||
-rw-r--r-- | test-suite/bugs/opened/3625.v | 7 | ||||
-rw-r--r-- | test-suite/bugs/opened/3626.v | 7 | ||||
-rw-r--r-- | test-suite/bugs/opened/3628.v | 9 | ||||
-rw-r--r-- | test-suite/bugs/opened/3655.v | 5 | ||||
-rw-r--r-- | test-suite/bugs/opened/3660.v | 27 |
12 files changed, 883 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/3647.v b/test-suite/bugs/closed/3647.v new file mode 100644 index 000000000..cd542c8a5 --- /dev/null +++ b/test-suite/bugs/closed/3647.v @@ -0,0 +1,652 @@ +Require Coq.Setoids.Setoid. + +Axiom BITS : nat -> Set. +Definition n7 := 7. +Definition n15 := 15. +Definition n31 := 31. +Notation n8 := (S n7). +Notation n16 := (S n15). +Notation n32 := (S n31). +Inductive OpSize := OpSize1 | OpSize2 | OpSize4 . +Definition VWORD s := BITS (match s with OpSize1 => n8 | OpSize2 => n16 | OpSize4 => n32 end). +Definition BYTE := VWORD OpSize1. +Definition WORD := VWORD OpSize2. +Definition DWORD := VWORD OpSize4. +Ltac subst_body := + repeat match goal with + | [ H := _ |- _ ] => subst H + end. +Import Coq.Setoids.Setoid. +Class Equiv (A : Type) := equiv : relation A. +Infix "===" := equiv (at level 70, no associativity). +Class type (A : Type) {e : Equiv A} := eq_equiv : Equivalence equiv. +Definition setoid_resp {T T'} (f : T -> T') `{e : type T} `{e' : type T'} := forall x y, x === y -> f x === f y. +Record morphism T T' `{e : type T} `{e' : type T'} := + mkMorph { + morph :> T -> T'; + morph_resp : setoid_resp morph}. +Implicit Arguments mkMorph [T T' e e0 e' e1]. +Infix "-s>" := morphism (at level 45, right associativity). +Section Morphisms. + Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}. + Global Instance morph_equiv : Equiv (S -s> T). + admit. + Defined. + + Global Instance morph_type : type (S -s> T). + admit. + Defined. + + Program Definition mcomp (f: T -s> U) (g: S -s> T) : (S -s> U) := + mkMorph (fun x => f (g x)) _. + Next Obligation. + admit. + Defined. + +End Morphisms. + +Infix "<<" := mcomp (at level 35). + +Section MorphConsts. + Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}. + + Definition lift2s (f : S -> T -> U) p q : (S -s> T -s> U) := + mkMorph (fun x => mkMorph (f x) (p x)) q. + +End MorphConsts. +Instance Equiv_PropP : Equiv Prop. +admit. +Defined. + +Section SetoidProducts. + Context {A B : Type} `{eA : type A} `{eB : type B}. + Global Instance Equiv_prod : Equiv (A * B). + admit. + Defined. + + Global Instance type_prod : type (A * B). + admit. + Defined. + + Program Definition mfst : (A * B) -s> A := + mkMorph (fun p => fst p) _. + Next Obligation. + admit. + Defined. + + Program Definition msnd : (A * B) -s> B := + mkMorph (fun p => snd p) _. + Next Obligation. + admit. + Defined. + + Context {C} `{eC : type C}. + + Program Definition mprod (f: C -s> A) (g: C -s> B) : C -s> (A * B) := + mkMorph (fun c => (f c, g c)) _. + Next Obligation. + admit. + Defined. + +End SetoidProducts. + +Section IndexedProducts. + + Record ttyp := {carr :> Type; eqc : Equiv carr; eqok : type carr}. + Global Instance ttyp_proj_eq {A : ttyp} : Equiv A. + admit. + Defined. + Global Instance ttyp_proj_prop {A : ttyp} : type A. + admit. + Defined. + Context {I : Type} {P : I -> ttyp}. + + Global Program Instance Equiv_prodI : Equiv (forall i, P i) := + fun p p' : forall i, P i => (forall i : I, @equiv _ (eqc _) (p i) (p' i)). + + Global Instance type_prodI : type (forall i, P i). + admit. + Defined. + + Program Definition mprojI (i : I) : (forall i, P i) -s> P i := + mkMorph (fun X => X i) _. + Next Obligation. + admit. + Defined. + + Context {C : Type} `{eC : type C}. + + Program Definition mprodI (f : forall i, C -s> P i) : C -s> (forall i, P i) := + mkMorph (fun c i => f i c) _. + Next Obligation. + admit. + Defined. + +End IndexedProducts. + +Section Exponentials. + + Context {A B C D} `{eA : type A} `{eB : type B} `{eC : type C} `{eD : type D}. + + Program Definition comps : (B -s> C) -s> (A -s> B) -s> A -s> C := + lift2s (fun f g => f << g) _ _. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + + Program Definition muncurry (f : A -s> B -s> C) : A * B -s> C := + mkMorph (fun p => f (fst p) (snd p)) _. + Next Obligation. + admit. + Defined. + + Program Definition mcurry (f : A * B -s> C) : A -s> B -s> C := + lift2s (fun a b => f (a, b)) _ _. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + + Program Definition meval : (B -s> A) * B -s> A := + mkMorph (fun p => fst p (snd p)) _. + Next Obligation. + admit. + Defined. + + Program Definition mid : A -s> A := mkMorph (fun x => x) _. + Next Obligation. + admit. + Defined. + + Program Definition mconst (b : B) : A -s> B := mkMorph (fun _ => b) _. + Next Obligation. + admit. + Defined. + +End Exponentials. + +Inductive empty : Set := . +Instance empty_Equiv : Equiv empty. +admit. +Defined. +Instance empty_type : type empty. +admit. +Defined. + +Section Initials. + Context {A} `{eA : type A}. + + Program Definition mzero_init : empty -s> A := mkMorph (fun x => match x with end) _. + Next Obligation. + admit. + Defined. + +End Initials. + +Section Subsetoid. + + Context {A} `{eA : type A} {P : A -> Prop}. + Global Instance subset_Equiv : Equiv {a : A | P a}. + admit. + Defined. + Global Instance subset_type : type {a : A | P a}. + admit. + Defined. + + Program Definition mforget : {a : A | P a} -s> A := + mkMorph (fun x => x) _. + Next Obligation. + admit. + Defined. + + Context {B} `{eB : type B}. + Program Definition minherit (f : B -s> A) (HB : forall b, P (f b)) : B -s> {a : A | P a} := + mkMorph (fun b => exist P (f b) (HB b)) _. + Next Obligation. + admit. + Defined. + +End Subsetoid. + +Section Option. + + Context {A} `{eA : type A}. + Global Instance option_Equiv : Equiv (option A). + admit. + Defined. + + Global Instance option_type : type (option A). + admit. + Defined. + +End Option. + +Section OptDefs. + Context {A B} `{eA : type A} `{eB : type B}. + + Program Definition msome : A -s> option A := mkMorph (fun a => Some a) _. + Next Obligation. + admit. + Defined. + + Program Definition moptionbind (f : A -s> option B) : option A -s> option B := + mkMorph (fun oa => match oa with None => None | Some a => f a end) _. + Next Obligation. + admit. + Defined. + +End OptDefs. + +Generalizable Variables Frm. + +Class ILogicOps Frm := { + lentails: relation Frm; + ltrue: Frm; + lfalse: Frm; + limpl: Frm -> Frm -> Frm; + land: Frm -> Frm -> Frm; + lor: Frm -> Frm -> Frm; + lforall: forall {T}, (T -> Frm) -> Frm; + lexists: forall {T}, (T -> Frm) -> Frm + }. + +Infix "|--" := lentails (at level 79, no associativity). +Infix "//\\" := land (at level 75, right associativity). +Infix "\\//" := lor (at level 76, right associativity). +Infix "-->>" := limpl (at level 77, right associativity). +Notation "'Forall' x .. y , p" := + (lforall (fun x => .. (lforall (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity). +Notation "'Exists' x .. y , p" := + (lexists (fun x => .. (lexists (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity). + +Class ILogic Frm {ILOps: ILogicOps Frm} := { + lentailsPre:> PreOrder lentails; + ltrueR: forall C, C |-- ltrue; + lfalseL: forall C, lfalse |-- C; + lforallL: forall T x (P: T -> Frm) C, P x |-- C -> lforall P |-- C; + lforallR: forall T (P: T -> Frm) C, (forall x, C |-- P x) -> C |-- lforall P; + lexistsL: forall T (P: T -> Frm) C, (forall x, P x |-- C) -> lexists P |-- C; + lexistsR: forall T x (P: T -> Frm) C, C |-- P x -> C |-- lexists P; + landL1: forall P Q C, P |-- C -> P //\\ Q |-- C; + landL2: forall P Q C, Q |-- C -> P //\\ Q |-- C; + lorR1: forall P Q C, C |-- P -> C |-- P \\// Q; + lorR2: forall P Q C, C |-- Q -> C |-- P \\// Q; + landR: forall P Q C, C |-- P -> C |-- Q -> C |-- P //\\ Q; + lorL: forall P Q C, P |-- C -> Q |-- C -> P \\// Q |-- C; + landAdj: forall P Q C, C |-- (P -->> Q) -> C //\\ P |-- Q; + limplAdj: forall P Q C, C //\\ P |-- Q -> C |-- (P -->> Q) + }. +Hint Extern 0 (?x |-- ?x) => reflexivity. + +Section ILogicExtra. + Context `{IL: ILogic Frm}. + Definition lpropand (p: Prop) Q := Exists _: p, Q. + Definition lpropimpl (p: Prop) Q := Forall _: p, Q. + +End ILogicExtra. + +Infix "/\\" := lpropand (at level 75, right associativity). +Infix "->>" := lpropimpl (at level 77, right associativity). + +Section ILogic_Fun. + Context (T: Type) `{TType: type T}. + Context `{IL: ILogic Frm}. + + Record ILFunFrm := mkILFunFrm { + ILFunFrm_pred :> T -> Frm; + ILFunFrm_closed: forall t t': T, t === t' -> + ILFunFrm_pred t |-- ILFunFrm_pred t' + }. + + Notation "'mk'" := @mkILFunFrm. + + Program Definition ILFun_Ops : ILogicOps ILFunFrm := {| + lentails P Q := forall t:T, P t |-- Q t; + ltrue := mk (fun t => ltrue) _; + lfalse := mk (fun t => lfalse) _; + limpl P Q := mk (fun t => P t -->> Q t) _; + land P Q := mk (fun t => P t //\\ Q t) _; + lor P Q := mk (fun t => P t \\// Q t) _; + lforall A P := mk (fun t => Forall a, P a t) _; + lexists A P := mk (fun t => Exists a, P a t) _ + |}. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + +End ILogic_Fun. + +Implicit Arguments ILFunFrm [[ILOps] [e]]. +Implicit Arguments mkILFunFrm [T Frm ILOps]. + +Program Definition ILFun_eq {T R} {ILOps: ILogicOps R} {ILogic: ILogic R} (P : T -> R) : + @ILFunFrm T _ R ILOps := + @mkILFunFrm T eq R ILOps P _. +Next Obligation. + admit. +Defined. + +Instance ILogicOps_Prop : ILogicOps Prop | 2 := {| + lentails P Q := (P : Prop) -> Q; + ltrue := True; + lfalse := False; + limpl P Q := P -> Q; + land P Q := P /\ Q; + lor P Q := P \/ Q; + lforall T F := forall x:T, F x; + lexists T F := exists x:T, F x + |}. + +Instance ILogic_Prop : ILogic Prop. +admit. +Defined. + +Section FunEq. + Context A `{eT: type A}. + + Global Instance FunEquiv {T} : Equiv (T -> A) := { + equiv P Q := forall a, P a === Q a + }. +End FunEq. + +Section SepAlgSect. + Class SepAlgOps T `{eT : type T}:= { + sa_unit : T; + + sa_mul : T -> T -> T -> Prop + }. + + Class SepAlg T `{SAOps: SepAlgOps T} : Type := { + sa_mul_eqL a b c d : sa_mul a b c -> c === d -> sa_mul a b d; + sa_mul_eqR a b c d : sa_mul a b c -> sa_mul a b d -> c === d; + sa_mon a b c : a === b -> sa_mul a c === sa_mul b c; + sa_mulC a b : sa_mul a b === sa_mul b a; + sa_mulA a b c : forall bc abc, sa_mul a bc abc -> sa_mul b c bc -> + exists ac, sa_mul b ac abc /\ sa_mul a c ac; + sa_unitI a : sa_mul a sa_unit a + }. + +End SepAlgSect. + +Section BILogic. + + Class BILOperators (A : Type) := { + empSP : A; + sepSP : A -> A -> A; + wandSP : A -> A -> A + }. + +End BILogic. + +Notation "a '**' b" := (sepSP a b) + (at level 75, right associativity). + +Section BISepAlg. + Context {A} `{sa : SepAlg A}. + Context {B} `{IL: ILogic B}. + + Program Instance SABIOps: BILOperators (ILFunFrm A B) := { + empSP := mkILFunFrm e (fun x => sa_unit === x /\\ ltrue) _; + sepSP P Q := mkILFunFrm e (fun x => Exists x1, Exists x2, sa_mul x1 x2 x /\\ + P x1 //\\ Q x2) _; + wandSP P Q := mkILFunFrm e (fun x => Forall x1, Forall x2, sa_mul x x1 x2 ->> + P x1 -->> Q x2) _ + }. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + Next Obligation. + admit. + Defined. + +End BISepAlg. + +Set Implicit Arguments. + +Definition Chan := WORD. +Definition Data := BYTE. + +Inductive Action := +| Out (c:Chan) (d:Data) +| In (c:Chan) (d:Data). + +Definition Actions := list Action. + +Instance ActionsEquiv : Equiv Actions := { + equiv a1 a2 := a1 = a2 + }. + +Definition OPred := ILFunFrm Actions Prop. +Definition mkOPred (P : Actions -> Prop) : OPred. + admit. +Defined. + +Definition eq_opred s := mkOPred (fun s' => s === s'). +Definition empOP : OPred. + exact (eq_opred nil). +Defined. +Definition catOP (P Q: OPred) : OPred. + admit. +Defined. + +Class IsPointed (T : Type) := point : T. + +Generalizable All Variables. + +Notation IsPointed_OPred P := (IsPointed (exists x : Actions, (P : OPred) x)). + +Record PointedOPred := mkPointedOPred { + OPred_pred :> OPred; + OPred_inhabited: IsPointed_OPred OPred_pred + }. + +Existing Instance OPred_inhabited. + +Canonical Structure default_PointedOPred O `{IsPointed_OPred O} : PointedOPred + := {| OPred_pred := O ; OPred_inhabited := _ |}. +Instance IsPointed_eq_opred x : IsPointed_OPred (eq_opred x). +admit. +Defined. +Instance IsPointed_catOP `{IsPointed_OPred P, IsPointed_OPred Q} : IsPointed_OPred (catOP P Q). +admit. +Defined. + +Definition Flag := BITS 5. +Definition OF: Flag. + admit. +Defined. + +Inductive FlagVal := mkFlag (b: bool) | FlagUnspecified. +Coercion mkFlag : bool >-> FlagVal. +Inductive NonSPReg := EAX | EBX | ECX | EDX | ESI | EDI | EBP. + +Inductive Reg := nonSPReg (r: NonSPReg) | ESP. + +Inductive AnyReg := regToAnyReg (r: Reg) | EIP. + +Inductive BYTEReg := AL|BL|CL|DL|AH|BH|CH|DH. + +Inductive WORDReg := mkWordReg (r:Reg). +Definition PState : Type. +admit. +Defined. + +Instance PStateEquiv : Equiv PState. +admit. +Defined. + +Instance PStateType : type PState. +admit. +Defined. + +Instance PStateSepAlgOps: SepAlgOps PState. +admit. +Defined. +Definition SPred : Type. +exact (ILFunFrm PState Prop). +Defined. + +Local Existing Instance ILFun_Ops. +Local Existing Instance SABIOps. +Axiom BYTEregIs : BYTEReg -> BYTE -> SPred. + +Inductive RegOrFlag := +| RegOrFlagDWORD :> AnyReg -> RegOrFlag +| RegOrFlagWORD :> WORDReg -> RegOrFlag +| RegOrFlagBYTE :> BYTEReg -> RegOrFlag +| RegOrFlagF :> Flag -> RegOrFlag. + +Definition RegOrFlag_target rf := + match rf with + | RegOrFlagDWORD _ => DWORD + | RegOrFlagWORD _ => WORD + | RegOrFlagBYTE _ => BYTE + | RegOrFlagF _ => FlagVal + end. + +Inductive Condition := +| CC_O | CC_B | CC_Z | CC_BE | CC_S | CC_P | CC_L | CC_LE. + +Section ILSpecSect. + + Axiom spec : Type. + Global Instance ILOps: ILogicOps spec | 2. + admit. + Defined. + +End ILSpecSect. + +Axiom parameterized_basic : forall {T_OPred} {proj : T_OPred -> OPred} {T} (P : SPred) (c : T) (O : OPred) (Q : SPred), spec. +Global Notation loopy_basic := (@parameterized_basic PointedOPred OPred_pred _). + +Axiom program : Type. + +Axiom ConditionIs : forall (cc : Condition) (cv : RegOrFlag_target OF), SPred. + +Axiom foldl : forall {T R}, (R -> T -> R) -> R -> list T -> R. +Axiom nth : forall {T}, T -> list T -> nat -> T. +Axiom while : forall (ptest: program) + (cond: Condition) (value: bool) + (pbody: program), program. + +Lemma while_rule_ind {quantT} + {ptest} {cond : Condition} {value : bool} {pbody} + {S} + {transition_body : quantT -> quantT} + {P : quantT -> SPred} {Otest : quantT -> OPred} {Obody : quantT -> OPred} {O : quantT -> PointedOPred} + {O_after_test : quantT -> PointedOPred} + {I_state : quantT -> bool -> SPred} + {I_logic : quantT -> bool -> bool} + {Q : quantT -> SPred} + (Htest : S |-- (Forall (x : quantT), + (loopy_basic (P x) + ptest + (Otest x) + (Exists b, I_logic x b = true /\\ I_state x b ** ConditionIs cond b)))) + (Hbody : S |-- (Forall (x : quantT), + (loopy_basic (I_logic x value = true /\\ I_state x value ** ConditionIs cond value) + pbody + (Obody x) + (P (transition_body x))))) + (H_after_test : forall x, catOP (Otest x) (O_after_test x) |-- O x) + (H_body_after_test : forall x, I_logic x value = true -> catOP (Obody x) (O (transition_body x)) |-- O_after_test x) + (H_empty : forall x, I_logic x (negb value) = true -> empOP |-- O_after_test x) + (Q_correct : forall x, I_logic x (negb value) = true /\\ I_state x (negb value) ** ConditionIs cond (negb value) |-- Q x) + (Q_safe : forall x, I_logic x value = true -> Q (transition_body x) |-- Q x) +: S |-- (Forall (x : quantT), + loopy_basic (P x) + (while ptest cond value pbody) + (O x) + (Q x)). +admit. +Defined. +Axiom behead : forall {T}, list T -> list T. +Axiom all : forall {T}, (T -> bool) -> list T -> bool. +Axiom all_behead : forall {T} (xs : list T) P, all P xs = true -> all P (behead xs) = true. +Instance IsPointed_foldlOP A B C f g (init : A * B) `{IsPointed_OPred (g init)} + `{forall a acc, IsPointed_OPred (g acc) -> IsPointed_OPred (g (f acc a))} + (ls : list C) +: IsPointed_OPred (g (foldl f init ls)). +admit. +Defined. +Goal forall (ptest : program) (cond : Condition) (value : bool) + (pbody : program) (T ioT : Type) (P : T -> SPred) + (I : T -> bool -> SPred) (accumulate : T -> ioT -> T) + (Otest Obody : T -> ioT -> PointedOPred) + (coq_test__is_finished : ioT -> bool) (S : spec) + (al : BYTE), + (forall (initial : T) (xs : list ioT) (x : ioT), + all (fun t : ioT => negb (coq_test__is_finished t)) xs = true -> + coq_test__is_finished x = true -> + S + |-- loopy_basic (P initial ** BYTEregIs AL al) ptest + (Otest initial (nth x xs 0)) + (I initial + (match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end) ** + ConditionIs cond + (match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end))) -> + (forall (initial : T) (xs : list ioT) (x : ioT), + all (fun t : ioT => negb (coq_test__is_finished t)) xs = true -> + xs <> nil -> + coq_test__is_finished x = true -> + S + |-- loopy_basic (I initial value ** ConditionIs cond value) pbody + (Obody initial (nth x xs 0)) + (P (accumulate initial (nth x xs 0)) ** BYTEregIs AL al)) -> + forall x : ioT, + coq_test__is_finished x = true -> + S + |-- Forall ixsp : {init_xs : T * list ioT & + all (fun t : ioT => negb (coq_test__is_finished t)) + (snd init_xs) = true}, + loopy_basic (P (fst (projT1 ixsp)) ** BYTEregIs AL al) + (while ptest cond value pbody) + (catOP + (snd + (foldl + (fun (xy : T * OPred) (v : ioT) => + (accumulate (fst xy) v, + catOP (catOP (Otest (fst xy) v) (Obody (fst xy) v)) + (snd xy))) (fst (projT1 ixsp), empOP) + (snd (projT1 ixsp)))) + (Otest (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp))) + x)) + (I (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp))) + (negb value) ** ConditionIs cond (negb value)). + intros. + eapply @while_rule_ind + with (I_logic := fun ixsp b => match (match (coq_test__is_finished (nth x (snd (projT1 ixsp)) 0)) with true => negb value | false => value end), b with true, true => true | false, false => true | _, _ => false end) + (Otest := fun ixsp => Otest (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0)) + (Obody := fun ixsp => Obody (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0)) + (I_state := fun ixsp => I (fst (projT1 ixsp))) + (transition_body := fun ixsp => let initial := fst (projT1 ixsp) in + let xs := snd (projT1 ixsp) in + existT _ (accumulate initial (nth x xs 0), behead xs) _) + (O_after_test := fun ixsp => let initial := fst (projT1 ixsp) in + let xs := snd (projT1 ixsp) in + match xs with | nil => default_PointedOPred empOP | _ => Obody initial (nth x xs 0) end); + simpl projT1; simpl projT2; simpl fst; simpl snd; clear; let H := fresh in assert (H : False) by (clear; admit); destruct H. + + Grab Existential Variables. + subst_body; simpl. + refine (all_behead (projT2 _)). diff --git a/test-suite/bugs/opened/3509.v b/test-suite/bugs/opened/3509.v new file mode 100644 index 000000000..4c9ba95ab --- /dev/null +++ b/test-suite/bugs/opened/3509.v @@ -0,0 +1,18 @@ +Lemma match_bool_fn b A B xT xF +: match b as b return forall x : A, B b x with + | true => xT + | false => xF + end + = fun x : A => match b as b return B b x with + | true => xT x + | false => xF x + end. +admit. +Defined. +Lemma match_bool_comm_1 (b : bool) A B (F : forall x : A, B x) t f +: (if b as b return B (if b then t else f) then F t else F f) + = F (if b then t else f). +admit. +Defined. +Hint Rewrite match_bool_fn : matchdb. +Hint Rewrite match_bool_comm_1 : matchdb. diff --git a/test-suite/bugs/opened/3510.v b/test-suite/bugs/opened/3510.v new file mode 100644 index 000000000..9e5489339 --- /dev/null +++ b/test-suite/bugs/opened/3510.v @@ -0,0 +1,34 @@ +Lemma match_option_fn T (b : option T) A B s n +: match b as b return forall x : A, B b x with + | Some k => s k + | None => n + end + = fun x : A => match b as b return B b x with + | Some k => s k x + | None => n x + end. +admit. +Defined. +Lemma match_option_comm_2 T (p : option T) A B R (f : forall (x : A) (y : B x), R x y) (s1 : T -> A) (s2 : forall x : T, B (s1 x)) n1 n2 +: match p as p return R match p with + | Some k => s1 k + | None => n1 + end + match p as p return B match p with Some k => s1 k | None => n1 end with + | Some k => s2 k + | None => n2 + end with + | Some k => f (s1 k) (s2 k) + | None => f n1 n2 + end + = f match p return A with + | Some k => s1 k + | None => n1 + end + match p as p return B match p with Some k => s1 k | None => n1 end with + | Some k => s2 k + | None => n2 + end. +admit. +Defined. +Hint Rewrite match_option_fn match_option_comm_2 : matchdb. diff --git a/test-suite/bugs/opened/3554.v b/test-suite/bugs/opened/3554.v new file mode 100644 index 000000000..13a79cc84 --- /dev/null +++ b/test-suite/bugs/opened/3554.v @@ -0,0 +1 @@ +Example foo (f : forall {_ : Type}, Type) : Type. diff --git a/test-suite/bugs/opened/3562.v b/test-suite/bugs/opened/3562.v new file mode 100644 index 000000000..cfbdd5554 --- /dev/null +++ b/test-suite/bugs/opened/3562.v @@ -0,0 +1,2 @@ +Theorem t: True. +destruct 0 as x. diff --git a/test-suite/bugs/opened/3566.v b/test-suite/bugs/opened/3566.v new file mode 100644 index 000000000..e0075b833 --- /dev/null +++ b/test-suite/bugs/opened/3566.v @@ -0,0 +1,21 @@ +Notation idmap := (fun x => x). +Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. +Arguments idpath {A a} , [A] a. +Notation "x = y :> A" := (@paths A x y) : type_scope. +Notation "x = y" := (x = y :>_) : type_scope. +Delimit Scope path_scope with path. +Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. +Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end. +Notation "p @ q" := (concat p q) (at level 20) : path_scope. +Notation "p ^" := (inverse p) (at level 3, format "p '^'") : path_scope. +Class IsEquiv {A B : Type} (f : A -> B) := {}. +Axiom path_universe : forall {A B : Type} (f : A -> B) {feq : IsEquiv f}, (A = B). + +Definition Lift : Type@{i} -> Type@{j} + := Eval hnf in let lt := Type@{i} : Type@{j} in fun T => T. + +Definition lift {T} : T -> Lift T := fun x => x. + +Goal forall x y : Type, x = y. + intros. + pose proof ((fun H0 : idmap _ => (@path_universe _ _ (@lift x) (H0 x) @ (@path_universe _ _ (@lift y) (H0 y))^)))%path as H''. diff --git a/test-suite/bugs/opened/3618.v b/test-suite/bugs/opened/3618.v new file mode 100644 index 000000000..cebfcc20e --- /dev/null +++ b/test-suite/bugs/opened/3618.v @@ -0,0 +1,100 @@ +Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x). +Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. +Notation "x = y" := (@paths _ x y) : type_scope. +Definition concat {A} {x y z : A} : x = y -> y = z -> x = z. Admitted. +Definition inverse {A : Type} {x y : A} (p : x = y) : y = x. Admitted. +Notation "p @ q" := (concat p q) (at level 20). +Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y. Admitted. +Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y. Admitted. + +Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { + equiv_inv : B -> A ; + eisretr : forall x, f (equiv_inv x) = x; + eissect : forall x, equiv_inv (f x) = x +}. + +Class Contr_internal (A : Type). + +Inductive trunc_index : Type := +| minus_two : trunc_index +| trunc_S : trunc_index -> trunc_index. + +Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type := + match n with + | minus_two => Contr_internal A + | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y) + end. + +Class IsTrunc (n : trunc_index) (A : Type) : Type := + Trunc_is_trunc : IsTrunc_internal n A. +Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A) +: IsTrunc n (x = y). +Admitted. + +Class Funext. + +Instance isequiv_compose A B C f g `{IsEquiv A B f} `{IsEquiv B C g} + : IsEquiv (compose g f) | 1000. +Admitted. + +Section IsEquivHomotopic. + Context (A B : Type) `(f : A -> B) `(g : A -> B) `{IsEquiv A B f} (h : forall x:A, f x = g x). + Let sect := (fun b:B => inverse (h (@equiv_inv _ _ f _ b)) @ @eisretr _ _ f _ b). + Let retr := (fun a:A => inverse (ap (@equiv_inv _ _ f _) (h a)) @ @eissect _ _ f _ a). + Global Instance isequiv_homotopic : IsEquiv g | 10000 + := ( BuildIsEquiv _ _ g (@equiv_inv _ _ f _) sect retr). +End IsEquivHomotopic. + +Instance trunc_succ A n `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000. Admitted. + +Global Instance trunc_forall A n `{P : A -> Type} `{forall a, IsTrunc n (P a)} + : IsTrunc n (forall a, P a) | 100. +Admitted. + +Instance trunc_prod A B n `{IsTrunc n A} `{IsTrunc n B} : IsTrunc n (A * B) | 100. +Admitted. + +Global Instance trunc_arrow n {A B : Type} `{IsTrunc n B} : IsTrunc n (A -> B) | 100. +Admitted. + +Instance isequiv_pr1_contr {A} {P : A -> Type} `{forall a, IsTrunc minus_two (P a)} +: IsEquiv (@projT1 A P) | 100. +Admitted. + +Instance trunc_sigma n A `{P : A -> Type} `{IsTrunc n A} `{forall a, IsTrunc n (P a)} +: IsTrunc n (sigT P) | 100. +Admitted. + +Global Instance trunc_trunc `{Funext} A m n : IsTrunc (trunc_S n) (IsTrunc m A) | 0. +Admitted. + +Definition BiInv {A B} (f : A -> B) : Type +:= ( {g : B -> A & forall x, g (f x) = x} * {h : B -> A & forall x, f (h x) = x}). + +Global Instance isprop_biinv {A B} (f : A -> B) : IsTrunc (trunc_S minus_two) (BiInv f) | 0. +Admitted. + +Instance isequiv_path {A B : Type} (p : A = B) +: IsEquiv (transport (fun X:Type => X) p) | 0. +Admitted. + +Class ReflectiveSubuniverse_internal := + { inO_internal : Type -> Type ; + O : Type -> Type ; + O_unit : forall T, T -> O T }. + +Class ReflectiveSubuniverse := + ReflectiveSubuniverse_wrap : Funext -> ReflectiveSubuniverse_internal. +Global Existing Instance ReflectiveSubuniverse_wrap. + +Class inO {fs : Funext} {subU : ReflectiveSubuniverse} (T : Type) := + isequiv_inO : inO_internal T. + +Global Instance hprop_inO {fs : Funext} {subU : ReflectiveSubuniverse} (T : Type) : IsTrunc (trunc_S minus_two) (inO T) . +Admitted. + +Definition equiv_O_rectnd {fs : Funext} {subU : ReflectiveSubuniverse} + (P Q : Type) {Q_inO : inO_internal Q} +: IsEquiv (fun f => compose f (O_unit P)) +:= _. + diff --git a/test-suite/bugs/opened/3625.v b/test-suite/bugs/opened/3625.v new file mode 100644 index 000000000..02110919b --- /dev/null +++ b/test-suite/bugs/opened/3625.v @@ -0,0 +1,7 @@ +Set Implicit Arguments. +Set Primitive Projections. +Record prod A B := pair { fst : A ; snd : B }. + +Goal forall x y : prod Set Set, x.(@fst) = y.(@fst). + intros. + apply f_equal. diff --git a/test-suite/bugs/opened/3626.v b/test-suite/bugs/opened/3626.v new file mode 100644 index 000000000..02110919b --- /dev/null +++ b/test-suite/bugs/opened/3626.v @@ -0,0 +1,7 @@ +Set Implicit Arguments. +Set Primitive Projections. +Record prod A B := pair { fst : A ; snd : B }. + +Goal forall x y : prod Set Set, x.(@fst) = y.(@fst). + intros. + apply f_equal. diff --git a/test-suite/bugs/opened/3628.v b/test-suite/bugs/opened/3628.v new file mode 100644 index 000000000..4001cf7c2 --- /dev/null +++ b/test-suite/bugs/opened/3628.v @@ -0,0 +1,9 @@ +Module NonPrim. + Class AClass := { x : Set }. + Arguments x {AClass}. +End NonPrim. +Module Prim. + Set Primitive Projections. + Class AClass := { x : Set }. + Arguments x {AClass}. +End Prim. diff --git a/test-suite/bugs/opened/3655.v b/test-suite/bugs/opened/3655.v new file mode 100644 index 000000000..3ef112b7c --- /dev/null +++ b/test-suite/bugs/opened/3655.v @@ -0,0 +1,5 @@ +Ltac bar x := pose x. +Tactic Notation "foo" open_constr(x) := bar x. +Class baz := { baz' : Type }. +Goal True. + foo baz'. diff --git a/test-suite/bugs/opened/3660.v b/test-suite/bugs/opened/3660.v new file mode 100644 index 000000000..0ee56b5ae --- /dev/null +++ b/test-suite/bugs/opened/3660.v @@ -0,0 +1,27 @@ +Generalizable All Variables. +Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x). +Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope. +Open Scope function_scope. +Axiom ap : forall {A B:Type} (f:A -> B) {x y:A} (p:x = y), f x = f y. +Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }. +Record Equiv A B := { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }. +Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope. +Axiom IsHSet : Type -> Type. +Instance isequiv_compose `{IsEquiv A B f} `{IsEquiv B C g} : IsEquiv (compose g f) | 1000. +admit. +Defined. +Set Primitive Projections. +Record hSet := BuildhSet {setT:> Type; iss :> IsHSet setT}. +Canonical Structure default_HSet:= fun T P => (@BuildhSet T P). +Global Instance isequiv_ap_setT X Y : IsEquiv (@ap _ _ setT X Y). +admit. +Defined. +Local Open Scope equiv_scope. +Axiom equiv_path : forall (A B : Type) (p : A = B), A <~> B. +Goal forall (C D : hSet), IsEquiv (fun x : C = D => (equiv_path C D (ap setT x))). + intros. + change (IsEquiv (equiv_path C D o @ap _ _ setT C D)). + apply @isequiv_compose; [ | admit ]. + solve [ apply isequiv_ap_setT ]. + Undo. + typeclasses eauto. |