aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Xavier Clerc <xavier.clerc@inria.fr>2014-09-25 11:14:27 +0200
committerGravatar Xavier Clerc <xavier.clerc@inria.fr>2014-09-25 11:14:27 +0200
commit5ee96761e3cd19236f446a11d178a31328b325ec (patch)
tree568e3a3e523e0ab65743e28e0589ec47dc11ad38
parentd5b7c4b6e0efa998a35182cb1dbf6c309a82ba5a (diff)
Add several reproduction files for bugs.
-rw-r--r--test-suite/bugs/closed/3647.v652
-rw-r--r--test-suite/bugs/opened/3509.v18
-rw-r--r--test-suite/bugs/opened/3510.v34
-rw-r--r--test-suite/bugs/opened/3554.v1
-rw-r--r--test-suite/bugs/opened/3562.v2
-rw-r--r--test-suite/bugs/opened/3566.v21
-rw-r--r--test-suite/bugs/opened/3618.v100
-rw-r--r--test-suite/bugs/opened/3625.v7
-rw-r--r--test-suite/bugs/opened/3626.v7
-rw-r--r--test-suite/bugs/opened/3628.v9
-rw-r--r--test-suite/bugs/opened/3655.v5
-rw-r--r--test-suite/bugs/opened/3660.v27
12 files changed, 883 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/3647.v b/test-suite/bugs/closed/3647.v
new file mode 100644
index 000000000..cd542c8a5
--- /dev/null
+++ b/test-suite/bugs/closed/3647.v
@@ -0,0 +1,652 @@
+Require Coq.Setoids.Setoid.
+
+Axiom BITS : nat -> Set.
+Definition n7 := 7.
+Definition n15 := 15.
+Definition n31 := 31.
+Notation n8 := (S n7).
+Notation n16 := (S n15).
+Notation n32 := (S n31).
+Inductive OpSize := OpSize1 | OpSize2 | OpSize4 .
+Definition VWORD s := BITS (match s with OpSize1 => n8 | OpSize2 => n16 | OpSize4 => n32 end).
+Definition BYTE := VWORD OpSize1.
+Definition WORD := VWORD OpSize2.
+Definition DWORD := VWORD OpSize4.
+Ltac subst_body :=
+ repeat match goal with
+ | [ H := _ |- _ ] => subst H
+ end.
+Import Coq.Setoids.Setoid.
+Class Equiv (A : Type) := equiv : relation A.
+Infix "===" := equiv (at level 70, no associativity).
+Class type (A : Type) {e : Equiv A} := eq_equiv : Equivalence equiv.
+Definition setoid_resp {T T'} (f : T -> T') `{e : type T} `{e' : type T'} := forall x y, x === y -> f x === f y.
+Record morphism T T' `{e : type T} `{e' : type T'} :=
+ mkMorph {
+ morph :> T -> T';
+ morph_resp : setoid_resp morph}.
+Implicit Arguments mkMorph [T T' e e0 e' e1].
+Infix "-s>" := morphism (at level 45, right associativity).
+Section Morphisms.
+ Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}.
+ Global Instance morph_equiv : Equiv (S -s> T).
+ admit.
+ Defined.
+
+ Global Instance morph_type : type (S -s> T).
+ admit.
+ Defined.
+
+ Program Definition mcomp (f: T -s> U) (g: S -s> T) : (S -s> U) :=
+ mkMorph (fun x => f (g x)) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End Morphisms.
+
+Infix "<<" := mcomp (at level 35).
+
+Section MorphConsts.
+ Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}.
+
+ Definition lift2s (f : S -> T -> U) p q : (S -s> T -s> U) :=
+ mkMorph (fun x => mkMorph (f x) (p x)) q.
+
+End MorphConsts.
+Instance Equiv_PropP : Equiv Prop.
+admit.
+Defined.
+
+Section SetoidProducts.
+ Context {A B : Type} `{eA : type A} `{eB : type B}.
+ Global Instance Equiv_prod : Equiv (A * B).
+ admit.
+ Defined.
+
+ Global Instance type_prod : type (A * B).
+ admit.
+ Defined.
+
+ Program Definition mfst : (A * B) -s> A :=
+ mkMorph (fun p => fst p) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition msnd : (A * B) -s> B :=
+ mkMorph (fun p => snd p) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Context {C} `{eC : type C}.
+
+ Program Definition mprod (f: C -s> A) (g: C -s> B) : C -s> (A * B) :=
+ mkMorph (fun c => (f c, g c)) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End SetoidProducts.
+
+Section IndexedProducts.
+
+ Record ttyp := {carr :> Type; eqc : Equiv carr; eqok : type carr}.
+ Global Instance ttyp_proj_eq {A : ttyp} : Equiv A.
+ admit.
+ Defined.
+ Global Instance ttyp_proj_prop {A : ttyp} : type A.
+ admit.
+ Defined.
+ Context {I : Type} {P : I -> ttyp}.
+
+ Global Program Instance Equiv_prodI : Equiv (forall i, P i) :=
+ fun p p' : forall i, P i => (forall i : I, @equiv _ (eqc _) (p i) (p' i)).
+
+ Global Instance type_prodI : type (forall i, P i).
+ admit.
+ Defined.
+
+ Program Definition mprojI (i : I) : (forall i, P i) -s> P i :=
+ mkMorph (fun X => X i) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Context {C : Type} `{eC : type C}.
+
+ Program Definition mprodI (f : forall i, C -s> P i) : C -s> (forall i, P i) :=
+ mkMorph (fun c i => f i c) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End IndexedProducts.
+
+Section Exponentials.
+
+ Context {A B C D} `{eA : type A} `{eB : type B} `{eC : type C} `{eD : type D}.
+
+ Program Definition comps : (B -s> C) -s> (A -s> B) -s> A -s> C :=
+ lift2s (fun f g => f << g) _ _.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition muncurry (f : A -s> B -s> C) : A * B -s> C :=
+ mkMorph (fun p => f (fst p) (snd p)) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition mcurry (f : A * B -s> C) : A -s> B -s> C :=
+ lift2s (fun a b => f (a, b)) _ _.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition meval : (B -s> A) * B -s> A :=
+ mkMorph (fun p => fst p (snd p)) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition mid : A -s> A := mkMorph (fun x => x) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition mconst (b : B) : A -s> B := mkMorph (fun _ => b) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End Exponentials.
+
+Inductive empty : Set := .
+Instance empty_Equiv : Equiv empty.
+admit.
+Defined.
+Instance empty_type : type empty.
+admit.
+Defined.
+
+Section Initials.
+ Context {A} `{eA : type A}.
+
+ Program Definition mzero_init : empty -s> A := mkMorph (fun x => match x with end) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End Initials.
+
+Section Subsetoid.
+
+ Context {A} `{eA : type A} {P : A -> Prop}.
+ Global Instance subset_Equiv : Equiv {a : A | P a}.
+ admit.
+ Defined.
+ Global Instance subset_type : type {a : A | P a}.
+ admit.
+ Defined.
+
+ Program Definition mforget : {a : A | P a} -s> A :=
+ mkMorph (fun x => x) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Context {B} `{eB : type B}.
+ Program Definition minherit (f : B -s> A) (HB : forall b, P (f b)) : B -s> {a : A | P a} :=
+ mkMorph (fun b => exist P (f b) (HB b)) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End Subsetoid.
+
+Section Option.
+
+ Context {A} `{eA : type A}.
+ Global Instance option_Equiv : Equiv (option A).
+ admit.
+ Defined.
+
+ Global Instance option_type : type (option A).
+ admit.
+ Defined.
+
+End Option.
+
+Section OptDefs.
+ Context {A B} `{eA : type A} `{eB : type B}.
+
+ Program Definition msome : A -s> option A := mkMorph (fun a => Some a) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+ Program Definition moptionbind (f : A -s> option B) : option A -s> option B :=
+ mkMorph (fun oa => match oa with None => None | Some a => f a end) _.
+ Next Obligation.
+ admit.
+ Defined.
+
+End OptDefs.
+
+Generalizable Variables Frm.
+
+Class ILogicOps Frm := {
+ lentails: relation Frm;
+ ltrue: Frm;
+ lfalse: Frm;
+ limpl: Frm -> Frm -> Frm;
+ land: Frm -> Frm -> Frm;
+ lor: Frm -> Frm -> Frm;
+ lforall: forall {T}, (T -> Frm) -> Frm;
+ lexists: forall {T}, (T -> Frm) -> Frm
+ }.
+
+Infix "|--" := lentails (at level 79, no associativity).
+Infix "//\\" := land (at level 75, right associativity).
+Infix "\\//" := lor (at level 76, right associativity).
+Infix "-->>" := limpl (at level 77, right associativity).
+Notation "'Forall' x .. y , p" :=
+ (lforall (fun x => .. (lforall (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity).
+Notation "'Exists' x .. y , p" :=
+ (lexists (fun x => .. (lexists (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity).
+
+Class ILogic Frm {ILOps: ILogicOps Frm} := {
+ lentailsPre:> PreOrder lentails;
+ ltrueR: forall C, C |-- ltrue;
+ lfalseL: forall C, lfalse |-- C;
+ lforallL: forall T x (P: T -> Frm) C, P x |-- C -> lforall P |-- C;
+ lforallR: forall T (P: T -> Frm) C, (forall x, C |-- P x) -> C |-- lforall P;
+ lexistsL: forall T (P: T -> Frm) C, (forall x, P x |-- C) -> lexists P |-- C;
+ lexistsR: forall T x (P: T -> Frm) C, C |-- P x -> C |-- lexists P;
+ landL1: forall P Q C, P |-- C -> P //\\ Q |-- C;
+ landL2: forall P Q C, Q |-- C -> P //\\ Q |-- C;
+ lorR1: forall P Q C, C |-- P -> C |-- P \\// Q;
+ lorR2: forall P Q C, C |-- Q -> C |-- P \\// Q;
+ landR: forall P Q C, C |-- P -> C |-- Q -> C |-- P //\\ Q;
+ lorL: forall P Q C, P |-- C -> Q |-- C -> P \\// Q |-- C;
+ landAdj: forall P Q C, C |-- (P -->> Q) -> C //\\ P |-- Q;
+ limplAdj: forall P Q C, C //\\ P |-- Q -> C |-- (P -->> Q)
+ }.
+Hint Extern 0 (?x |-- ?x) => reflexivity.
+
+Section ILogicExtra.
+ Context `{IL: ILogic Frm}.
+ Definition lpropand (p: Prop) Q := Exists _: p, Q.
+ Definition lpropimpl (p: Prop) Q := Forall _: p, Q.
+
+End ILogicExtra.
+
+Infix "/\\" := lpropand (at level 75, right associativity).
+Infix "->>" := lpropimpl (at level 77, right associativity).
+
+Section ILogic_Fun.
+ Context (T: Type) `{TType: type T}.
+ Context `{IL: ILogic Frm}.
+
+ Record ILFunFrm := mkILFunFrm {
+ ILFunFrm_pred :> T -> Frm;
+ ILFunFrm_closed: forall t t': T, t === t' ->
+ ILFunFrm_pred t |-- ILFunFrm_pred t'
+ }.
+
+ Notation "'mk'" := @mkILFunFrm.
+
+ Program Definition ILFun_Ops : ILogicOps ILFunFrm := {|
+ lentails P Q := forall t:T, P t |-- Q t;
+ ltrue := mk (fun t => ltrue) _;
+ lfalse := mk (fun t => lfalse) _;
+ limpl P Q := mk (fun t => P t -->> Q t) _;
+ land P Q := mk (fun t => P t //\\ Q t) _;
+ lor P Q := mk (fun t => P t \\// Q t) _;
+ lforall A P := mk (fun t => Forall a, P a t) _;
+ lexists A P := mk (fun t => Exists a, P a t) _
+ |}.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+
+End ILogic_Fun.
+
+Implicit Arguments ILFunFrm [[ILOps] [e]].
+Implicit Arguments mkILFunFrm [T Frm ILOps].
+
+Program Definition ILFun_eq {T R} {ILOps: ILogicOps R} {ILogic: ILogic R} (P : T -> R) :
+ @ILFunFrm T _ R ILOps :=
+ @mkILFunFrm T eq R ILOps P _.
+Next Obligation.
+ admit.
+Defined.
+
+Instance ILogicOps_Prop : ILogicOps Prop | 2 := {|
+ lentails P Q := (P : Prop) -> Q;
+ ltrue := True;
+ lfalse := False;
+ limpl P Q := P -> Q;
+ land P Q := P /\ Q;
+ lor P Q := P \/ Q;
+ lforall T F := forall x:T, F x;
+ lexists T F := exists x:T, F x
+ |}.
+
+Instance ILogic_Prop : ILogic Prop.
+admit.
+Defined.
+
+Section FunEq.
+ Context A `{eT: type A}.
+
+ Global Instance FunEquiv {T} : Equiv (T -> A) := {
+ equiv P Q := forall a, P a === Q a
+ }.
+End FunEq.
+
+Section SepAlgSect.
+ Class SepAlgOps T `{eT : type T}:= {
+ sa_unit : T;
+
+ sa_mul : T -> T -> T -> Prop
+ }.
+
+ Class SepAlg T `{SAOps: SepAlgOps T} : Type := {
+ sa_mul_eqL a b c d : sa_mul a b c -> c === d -> sa_mul a b d;
+ sa_mul_eqR a b c d : sa_mul a b c -> sa_mul a b d -> c === d;
+ sa_mon a b c : a === b -> sa_mul a c === sa_mul b c;
+ sa_mulC a b : sa_mul a b === sa_mul b a;
+ sa_mulA a b c : forall bc abc, sa_mul a bc abc -> sa_mul b c bc ->
+ exists ac, sa_mul b ac abc /\ sa_mul a c ac;
+ sa_unitI a : sa_mul a sa_unit a
+ }.
+
+End SepAlgSect.
+
+Section BILogic.
+
+ Class BILOperators (A : Type) := {
+ empSP : A;
+ sepSP : A -> A -> A;
+ wandSP : A -> A -> A
+ }.
+
+End BILogic.
+
+Notation "a '**' b" := (sepSP a b)
+ (at level 75, right associativity).
+
+Section BISepAlg.
+ Context {A} `{sa : SepAlg A}.
+ Context {B} `{IL: ILogic B}.
+
+ Program Instance SABIOps: BILOperators (ILFunFrm A B) := {
+ empSP := mkILFunFrm e (fun x => sa_unit === x /\\ ltrue) _;
+ sepSP P Q := mkILFunFrm e (fun x => Exists x1, Exists x2, sa_mul x1 x2 x /\\
+ P x1 //\\ Q x2) _;
+ wandSP P Q := mkILFunFrm e (fun x => Forall x1, Forall x2, sa_mul x x1 x2 ->>
+ P x1 -->> Q x2) _
+ }.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+ Next Obligation.
+ admit.
+ Defined.
+
+End BISepAlg.
+
+Set Implicit Arguments.
+
+Definition Chan := WORD.
+Definition Data := BYTE.
+
+Inductive Action :=
+| Out (c:Chan) (d:Data)
+| In (c:Chan) (d:Data).
+
+Definition Actions := list Action.
+
+Instance ActionsEquiv : Equiv Actions := {
+ equiv a1 a2 := a1 = a2
+ }.
+
+Definition OPred := ILFunFrm Actions Prop.
+Definition mkOPred (P : Actions -> Prop) : OPred.
+ admit.
+Defined.
+
+Definition eq_opred s := mkOPred (fun s' => s === s').
+Definition empOP : OPred.
+ exact (eq_opred nil).
+Defined.
+Definition catOP (P Q: OPred) : OPred.
+ admit.
+Defined.
+
+Class IsPointed (T : Type) := point : T.
+
+Generalizable All Variables.
+
+Notation IsPointed_OPred P := (IsPointed (exists x : Actions, (P : OPred) x)).
+
+Record PointedOPred := mkPointedOPred {
+ OPred_pred :> OPred;
+ OPred_inhabited: IsPointed_OPred OPred_pred
+ }.
+
+Existing Instance OPred_inhabited.
+
+Canonical Structure default_PointedOPred O `{IsPointed_OPred O} : PointedOPred
+ := {| OPred_pred := O ; OPred_inhabited := _ |}.
+Instance IsPointed_eq_opred x : IsPointed_OPred (eq_opred x).
+admit.
+Defined.
+Instance IsPointed_catOP `{IsPointed_OPred P, IsPointed_OPred Q} : IsPointed_OPred (catOP P Q).
+admit.
+Defined.
+
+Definition Flag := BITS 5.
+Definition OF: Flag.
+ admit.
+Defined.
+
+Inductive FlagVal := mkFlag (b: bool) | FlagUnspecified.
+Coercion mkFlag : bool >-> FlagVal.
+Inductive NonSPReg := EAX | EBX | ECX | EDX | ESI | EDI | EBP.
+
+Inductive Reg := nonSPReg (r: NonSPReg) | ESP.
+
+Inductive AnyReg := regToAnyReg (r: Reg) | EIP.
+
+Inductive BYTEReg := AL|BL|CL|DL|AH|BH|CH|DH.
+
+Inductive WORDReg := mkWordReg (r:Reg).
+Definition PState : Type.
+admit.
+Defined.
+
+Instance PStateEquiv : Equiv PState.
+admit.
+Defined.
+
+Instance PStateType : type PState.
+admit.
+Defined.
+
+Instance PStateSepAlgOps: SepAlgOps PState.
+admit.
+Defined.
+Definition SPred : Type.
+exact (ILFunFrm PState Prop).
+Defined.
+
+Local Existing Instance ILFun_Ops.
+Local Existing Instance SABIOps.
+Axiom BYTEregIs : BYTEReg -> BYTE -> SPred.
+
+Inductive RegOrFlag :=
+| RegOrFlagDWORD :> AnyReg -> RegOrFlag
+| RegOrFlagWORD :> WORDReg -> RegOrFlag
+| RegOrFlagBYTE :> BYTEReg -> RegOrFlag
+| RegOrFlagF :> Flag -> RegOrFlag.
+
+Definition RegOrFlag_target rf :=
+ match rf with
+ | RegOrFlagDWORD _ => DWORD
+ | RegOrFlagWORD _ => WORD
+ | RegOrFlagBYTE _ => BYTE
+ | RegOrFlagF _ => FlagVal
+ end.
+
+Inductive Condition :=
+| CC_O | CC_B | CC_Z | CC_BE | CC_S | CC_P | CC_L | CC_LE.
+
+Section ILSpecSect.
+
+ Axiom spec : Type.
+ Global Instance ILOps: ILogicOps spec | 2.
+ admit.
+ Defined.
+
+End ILSpecSect.
+
+Axiom parameterized_basic : forall {T_OPred} {proj : T_OPred -> OPred} {T} (P : SPred) (c : T) (O : OPred) (Q : SPred), spec.
+Global Notation loopy_basic := (@parameterized_basic PointedOPred OPred_pred _).
+
+Axiom program : Type.
+
+Axiom ConditionIs : forall (cc : Condition) (cv : RegOrFlag_target OF), SPred.
+
+Axiom foldl : forall {T R}, (R -> T -> R) -> R -> list T -> R.
+Axiom nth : forall {T}, T -> list T -> nat -> T.
+Axiom while : forall (ptest: program)
+ (cond: Condition) (value: bool)
+ (pbody: program), program.
+
+Lemma while_rule_ind {quantT}
+ {ptest} {cond : Condition} {value : bool} {pbody}
+ {S}
+ {transition_body : quantT -> quantT}
+ {P : quantT -> SPred} {Otest : quantT -> OPred} {Obody : quantT -> OPred} {O : quantT -> PointedOPred}
+ {O_after_test : quantT -> PointedOPred}
+ {I_state : quantT -> bool -> SPred}
+ {I_logic : quantT -> bool -> bool}
+ {Q : quantT -> SPred}
+ (Htest : S |-- (Forall (x : quantT),
+ (loopy_basic (P x)
+ ptest
+ (Otest x)
+ (Exists b, I_logic x b = true /\\ I_state x b ** ConditionIs cond b))))
+ (Hbody : S |-- (Forall (x : quantT),
+ (loopy_basic (I_logic x value = true /\\ I_state x value ** ConditionIs cond value)
+ pbody
+ (Obody x)
+ (P (transition_body x)))))
+ (H_after_test : forall x, catOP (Otest x) (O_after_test x) |-- O x)
+ (H_body_after_test : forall x, I_logic x value = true -> catOP (Obody x) (O (transition_body x)) |-- O_after_test x)
+ (H_empty : forall x, I_logic x (negb value) = true -> empOP |-- O_after_test x)
+ (Q_correct : forall x, I_logic x (negb value) = true /\\ I_state x (negb value) ** ConditionIs cond (negb value) |-- Q x)
+ (Q_safe : forall x, I_logic x value = true -> Q (transition_body x) |-- Q x)
+: S |-- (Forall (x : quantT),
+ loopy_basic (P x)
+ (while ptest cond value pbody)
+ (O x)
+ (Q x)).
+admit.
+Defined.
+Axiom behead : forall {T}, list T -> list T.
+Axiom all : forall {T}, (T -> bool) -> list T -> bool.
+Axiom all_behead : forall {T} (xs : list T) P, all P xs = true -> all P (behead xs) = true.
+Instance IsPointed_foldlOP A B C f g (init : A * B) `{IsPointed_OPred (g init)}
+ `{forall a acc, IsPointed_OPred (g acc) -> IsPointed_OPred (g (f acc a))}
+ (ls : list C)
+: IsPointed_OPred (g (foldl f init ls)).
+admit.
+Defined.
+Goal forall (ptest : program) (cond : Condition) (value : bool)
+ (pbody : program) (T ioT : Type) (P : T -> SPred)
+ (I : T -> bool -> SPred) (accumulate : T -> ioT -> T)
+ (Otest Obody : T -> ioT -> PointedOPred)
+ (coq_test__is_finished : ioT -> bool) (S : spec)
+ (al : BYTE),
+ (forall (initial : T) (xs : list ioT) (x : ioT),
+ all (fun t : ioT => negb (coq_test__is_finished t)) xs = true ->
+ coq_test__is_finished x = true ->
+ S
+ |-- loopy_basic (P initial ** BYTEregIs AL al) ptest
+ (Otest initial (nth x xs 0))
+ (I initial
+ (match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end) **
+ ConditionIs cond
+ (match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end))) ->
+ (forall (initial : T) (xs : list ioT) (x : ioT),
+ all (fun t : ioT => negb (coq_test__is_finished t)) xs = true ->
+ xs <> nil ->
+ coq_test__is_finished x = true ->
+ S
+ |-- loopy_basic (I initial value ** ConditionIs cond value) pbody
+ (Obody initial (nth x xs 0))
+ (P (accumulate initial (nth x xs 0)) ** BYTEregIs AL al)) ->
+ forall x : ioT,
+ coq_test__is_finished x = true ->
+ S
+ |-- Forall ixsp : {init_xs : T * list ioT &
+ all (fun t : ioT => negb (coq_test__is_finished t))
+ (snd init_xs) = true},
+ loopy_basic (P (fst (projT1 ixsp)) ** BYTEregIs AL al)
+ (while ptest cond value pbody)
+ (catOP
+ (snd
+ (foldl
+ (fun (xy : T * OPred) (v : ioT) =>
+ (accumulate (fst xy) v,
+ catOP (catOP (Otest (fst xy) v) (Obody (fst xy) v))
+ (snd xy))) (fst (projT1 ixsp), empOP)
+ (snd (projT1 ixsp))))
+ (Otest (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp)))
+ x))
+ (I (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp)))
+ (negb value) ** ConditionIs cond (negb value)).
+ intros.
+ eapply @while_rule_ind
+ with (I_logic := fun ixsp b => match (match (coq_test__is_finished (nth x (snd (projT1 ixsp)) 0)) with true => negb value | false => value end), b with true, true => true | false, false => true | _, _ => false end)
+ (Otest := fun ixsp => Otest (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0))
+ (Obody := fun ixsp => Obody (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0))
+ (I_state := fun ixsp => I (fst (projT1 ixsp)))
+ (transition_body := fun ixsp => let initial := fst (projT1 ixsp) in
+ let xs := snd (projT1 ixsp) in
+ existT _ (accumulate initial (nth x xs 0), behead xs) _)
+ (O_after_test := fun ixsp => let initial := fst (projT1 ixsp) in
+ let xs := snd (projT1 ixsp) in
+ match xs with | nil => default_PointedOPred empOP | _ => Obody initial (nth x xs 0) end);
+ simpl projT1; simpl projT2; simpl fst; simpl snd; clear; let H := fresh in assert (H : False) by (clear; admit); destruct H.
+
+ Grab Existential Variables.
+ subst_body; simpl.
+ refine (all_behead (projT2 _)).
diff --git a/test-suite/bugs/opened/3509.v b/test-suite/bugs/opened/3509.v
new file mode 100644
index 000000000..4c9ba95ab
--- /dev/null
+++ b/test-suite/bugs/opened/3509.v
@@ -0,0 +1,18 @@
+Lemma match_bool_fn b A B xT xF
+: match b as b return forall x : A, B b x with
+ | true => xT
+ | false => xF
+ end
+ = fun x : A => match b as b return B b x with
+ | true => xT x
+ | false => xF x
+ end.
+admit.
+Defined.
+Lemma match_bool_comm_1 (b : bool) A B (F : forall x : A, B x) t f
+: (if b as b return B (if b then t else f) then F t else F f)
+ = F (if b then t else f).
+admit.
+Defined.
+Hint Rewrite match_bool_fn : matchdb.
+Hint Rewrite match_bool_comm_1 : matchdb.
diff --git a/test-suite/bugs/opened/3510.v b/test-suite/bugs/opened/3510.v
new file mode 100644
index 000000000..9e5489339
--- /dev/null
+++ b/test-suite/bugs/opened/3510.v
@@ -0,0 +1,34 @@
+Lemma match_option_fn T (b : option T) A B s n
+: match b as b return forall x : A, B b x with
+ | Some k => s k
+ | None => n
+ end
+ = fun x : A => match b as b return B b x with
+ | Some k => s k x
+ | None => n x
+ end.
+admit.
+Defined.
+Lemma match_option_comm_2 T (p : option T) A B R (f : forall (x : A) (y : B x), R x y) (s1 : T -> A) (s2 : forall x : T, B (s1 x)) n1 n2
+: match p as p return R match p with
+ | Some k => s1 k
+ | None => n1
+ end
+ match p as p return B match p with Some k => s1 k | None => n1 end with
+ | Some k => s2 k
+ | None => n2
+ end with
+ | Some k => f (s1 k) (s2 k)
+ | None => f n1 n2
+ end
+ = f match p return A with
+ | Some k => s1 k
+ | None => n1
+ end
+ match p as p return B match p with Some k => s1 k | None => n1 end with
+ | Some k => s2 k
+ | None => n2
+ end.
+admit.
+Defined.
+Hint Rewrite match_option_fn match_option_comm_2 : matchdb.
diff --git a/test-suite/bugs/opened/3554.v b/test-suite/bugs/opened/3554.v
new file mode 100644
index 000000000..13a79cc84
--- /dev/null
+++ b/test-suite/bugs/opened/3554.v
@@ -0,0 +1 @@
+Example foo (f : forall {_ : Type}, Type) : Type.
diff --git a/test-suite/bugs/opened/3562.v b/test-suite/bugs/opened/3562.v
new file mode 100644
index 000000000..cfbdd5554
--- /dev/null
+++ b/test-suite/bugs/opened/3562.v
@@ -0,0 +1,2 @@
+Theorem t: True.
+destruct 0 as x.
diff --git a/test-suite/bugs/opened/3566.v b/test-suite/bugs/opened/3566.v
new file mode 100644
index 000000000..e0075b833
--- /dev/null
+++ b/test-suite/bugs/opened/3566.v
@@ -0,0 +1,21 @@
+Notation idmap := (fun x => x).
+Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a.
+Arguments idpath {A a} , [A] a.
+Notation "x = y :> A" := (@paths A x y) : type_scope.
+Notation "x = y" := (x = y :>_) : type_scope.
+Delimit Scope path_scope with path.
+Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end.
+Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end.
+Notation "p @ q" := (concat p q) (at level 20) : path_scope.
+Notation "p ^" := (inverse p) (at level 3, format "p '^'") : path_scope.
+Class IsEquiv {A B : Type} (f : A -> B) := {}.
+Axiom path_universe : forall {A B : Type} (f : A -> B) {feq : IsEquiv f}, (A = B).
+
+Definition Lift : Type@{i} -> Type@{j}
+ := Eval hnf in let lt := Type@{i} : Type@{j} in fun T => T.
+
+Definition lift {T} : T -> Lift T := fun x => x.
+
+Goal forall x y : Type, x = y.
+ intros.
+ pose proof ((fun H0 : idmap _ => (@path_universe _ _ (@lift x) (H0 x) @ (@path_universe _ _ (@lift y) (H0 y))^)))%path as H''.
diff --git a/test-suite/bugs/opened/3618.v b/test-suite/bugs/opened/3618.v
new file mode 100644
index 000000000..cebfcc20e
--- /dev/null
+++ b/test-suite/bugs/opened/3618.v
@@ -0,0 +1,100 @@
+Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x).
+Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a.
+Notation "x = y" := (@paths _ x y) : type_scope.
+Definition concat {A} {x y z : A} : x = y -> y = z -> x = z. Admitted.
+Definition inverse {A : Type} {x y : A} (p : x = y) : y = x. Admitted.
+Notation "p @ q" := (concat p q) (at level 20).
+Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y. Admitted.
+Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y. Admitted.
+
+Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
+ equiv_inv : B -> A ;
+ eisretr : forall x, f (equiv_inv x) = x;
+ eissect : forall x, equiv_inv (f x) = x
+}.
+
+Class Contr_internal (A : Type).
+
+Inductive trunc_index : Type :=
+| minus_two : trunc_index
+| trunc_S : trunc_index -> trunc_index.
+
+Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
+ match n with
+ | minus_two => Contr_internal A
+ | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
+ end.
+
+Class IsTrunc (n : trunc_index) (A : Type) : Type :=
+ Trunc_is_trunc : IsTrunc_internal n A.
+Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A)
+: IsTrunc n (x = y).
+Admitted.
+
+Class Funext.
+
+Instance isequiv_compose A B C f g `{IsEquiv A B f} `{IsEquiv B C g}
+ : IsEquiv (compose g f) | 1000.
+Admitted.
+
+Section IsEquivHomotopic.
+ Context (A B : Type) `(f : A -> B) `(g : A -> B) `{IsEquiv A B f} (h : forall x:A, f x = g x).
+ Let sect := (fun b:B => inverse (h (@equiv_inv _ _ f _ b)) @ @eisretr _ _ f _ b).
+ Let retr := (fun a:A => inverse (ap (@equiv_inv _ _ f _) (h a)) @ @eissect _ _ f _ a).
+ Global Instance isequiv_homotopic : IsEquiv g | 10000
+ := ( BuildIsEquiv _ _ g (@equiv_inv _ _ f _) sect retr).
+End IsEquivHomotopic.
+
+Instance trunc_succ A n `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000. Admitted.
+
+Global Instance trunc_forall A n `{P : A -> Type} `{forall a, IsTrunc n (P a)}
+ : IsTrunc n (forall a, P a) | 100.
+Admitted.
+
+Instance trunc_prod A B n `{IsTrunc n A} `{IsTrunc n B} : IsTrunc n (A * B) | 100.
+Admitted.
+
+Global Instance trunc_arrow n {A B : Type} `{IsTrunc n B} : IsTrunc n (A -> B) | 100.
+Admitted.
+
+Instance isequiv_pr1_contr {A} {P : A -> Type} `{forall a, IsTrunc minus_two (P a)}
+: IsEquiv (@projT1 A P) | 100.
+Admitted.
+
+Instance trunc_sigma n A `{P : A -> Type} `{IsTrunc n A} `{forall a, IsTrunc n (P a)}
+: IsTrunc n (sigT P) | 100.
+Admitted.
+
+Global Instance trunc_trunc `{Funext} A m n : IsTrunc (trunc_S n) (IsTrunc m A) | 0.
+Admitted.
+
+Definition BiInv {A B} (f : A -> B) : Type
+:= ( {g : B -> A & forall x, g (f x) = x} * {h : B -> A & forall x, f (h x) = x}).
+
+Global Instance isprop_biinv {A B} (f : A -> B) : IsTrunc (trunc_S minus_two) (BiInv f) | 0.
+Admitted.
+
+Instance isequiv_path {A B : Type} (p : A = B)
+: IsEquiv (transport (fun X:Type => X) p) | 0.
+Admitted.
+
+Class ReflectiveSubuniverse_internal :=
+ { inO_internal : Type -> Type ;
+ O : Type -> Type ;
+ O_unit : forall T, T -> O T }.
+
+Class ReflectiveSubuniverse :=
+ ReflectiveSubuniverse_wrap : Funext -> ReflectiveSubuniverse_internal.
+Global Existing Instance ReflectiveSubuniverse_wrap.
+
+Class inO {fs : Funext} {subU : ReflectiveSubuniverse} (T : Type) :=
+ isequiv_inO : inO_internal T.
+
+Global Instance hprop_inO {fs : Funext} {subU : ReflectiveSubuniverse} (T : Type) : IsTrunc (trunc_S minus_two) (inO T) .
+Admitted.
+
+Definition equiv_O_rectnd {fs : Funext} {subU : ReflectiveSubuniverse}
+ (P Q : Type) {Q_inO : inO_internal Q}
+: IsEquiv (fun f => compose f (O_unit P))
+:= _.
+
diff --git a/test-suite/bugs/opened/3625.v b/test-suite/bugs/opened/3625.v
new file mode 100644
index 000000000..02110919b
--- /dev/null
+++ b/test-suite/bugs/opened/3625.v
@@ -0,0 +1,7 @@
+Set Implicit Arguments.
+Set Primitive Projections.
+Record prod A B := pair { fst : A ; snd : B }.
+
+Goal forall x y : prod Set Set, x.(@fst) = y.(@fst).
+ intros.
+ apply f_equal.
diff --git a/test-suite/bugs/opened/3626.v b/test-suite/bugs/opened/3626.v
new file mode 100644
index 000000000..02110919b
--- /dev/null
+++ b/test-suite/bugs/opened/3626.v
@@ -0,0 +1,7 @@
+Set Implicit Arguments.
+Set Primitive Projections.
+Record prod A B := pair { fst : A ; snd : B }.
+
+Goal forall x y : prod Set Set, x.(@fst) = y.(@fst).
+ intros.
+ apply f_equal.
diff --git a/test-suite/bugs/opened/3628.v b/test-suite/bugs/opened/3628.v
new file mode 100644
index 000000000..4001cf7c2
--- /dev/null
+++ b/test-suite/bugs/opened/3628.v
@@ -0,0 +1,9 @@
+Module NonPrim.
+ Class AClass := { x : Set }.
+ Arguments x {AClass}.
+End NonPrim.
+Module Prim.
+ Set Primitive Projections.
+ Class AClass := { x : Set }.
+ Arguments x {AClass}.
+End Prim.
diff --git a/test-suite/bugs/opened/3655.v b/test-suite/bugs/opened/3655.v
new file mode 100644
index 000000000..3ef112b7c
--- /dev/null
+++ b/test-suite/bugs/opened/3655.v
@@ -0,0 +1,5 @@
+Ltac bar x := pose x.
+Tactic Notation "foo" open_constr(x) := bar x.
+Class baz := { baz' : Type }.
+Goal True.
+ foo baz'.
diff --git a/test-suite/bugs/opened/3660.v b/test-suite/bugs/opened/3660.v
new file mode 100644
index 000000000..0ee56b5ae
--- /dev/null
+++ b/test-suite/bugs/opened/3660.v
@@ -0,0 +1,27 @@
+Generalizable All Variables.
+Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x).
+Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope.
+Open Scope function_scope.
+Axiom ap : forall {A B:Type} (f:A -> B) {x y:A} (p:x = y), f x = f y.
+Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }.
+Record Equiv A B := { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }.
+Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
+Axiom IsHSet : Type -> Type.
+Instance isequiv_compose `{IsEquiv A B f} `{IsEquiv B C g} : IsEquiv (compose g f) | 1000.
+admit.
+Defined.
+Set Primitive Projections.
+Record hSet := BuildhSet {setT:> Type; iss :> IsHSet setT}.
+Canonical Structure default_HSet:= fun T P => (@BuildhSet T P).
+Global Instance isequiv_ap_setT X Y : IsEquiv (@ap _ _ setT X Y).
+admit.
+Defined.
+Local Open Scope equiv_scope.
+Axiom equiv_path : forall (A B : Type) (p : A = B), A <~> B.
+Goal forall (C D : hSet), IsEquiv (fun x : C = D => (equiv_path C D (ap setT x))).
+ intros.
+ change (IsEquiv (equiv_path C D o @ap _ _ setT C D)).
+ apply @isequiv_compose; [ | admit ].
+ solve [ apply isequiv_ap_setT ].
+ Undo.
+ typeclasses eauto.