diff options
author | Matthieu Sozeau <mattam@mattam.org> | 2014-06-23 17:32:57 +0200 |
---|---|---|
committer | Matthieu Sozeau <mattam@mattam.org> | 2014-06-23 18:31:17 +0200 |
commit | 54b1866084938d46e510146a46bad8a712da27b7 (patch) | |
tree | f402a8b04de76c5916933e952a4468b37d1ba584 | |
parent | c92bb5b1da8223d61e0ac63a4ebd4a54f46d4670 (diff) |
Changed syntax of explicit universes.
-rw-r--r-- | test-suite/success/namedunivs.v | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/test-suite/success/namedunivs.v b/test-suite/success/namedunivs.v index 62ee5519d..5c0a3c7f2 100644 --- a/test-suite/success/namedunivs.v +++ b/test-suite/success/namedunivs.v @@ -2,15 +2,15 @@ (* Goal forall A B : Set, @paths Type A B -> @paths Set A B. *) (* intros A B H. *) (* Fail exact H. *) -(* Abort . *) +(* Section . *) Section lift_strict. Polymorphic Definition liftlt := - let t := Type{i} : Type{k} in - fun A : Type{i} => A : Type{k}. + let t := Type@{i} : Type@{k} in + fun A : Type@{i} => A : Type@{k}. Polymorphic Definition liftle := - fun A : Type{i} => A : Type{k}. + fun A : Type@{i} => A : Type@{k}. End lift_strict. @@ -20,25 +20,25 @@ Set Universe Polymorphism. (* | None : option A *) (* | Some : A -> option A. *) -Inductive option (A : Type{i}) : Type{i} := +Inductive option (A : Type@{i}) : Type@{i} := | None : option A | Some : A -> option A. -Definition foo' {A : Type{i}} (o : option@{i} A) : option@{i} A := +Definition foo' {A : Type@{i}} (o : option@{i} A) : option@{i} A := o. -Definition foo'' {A : Type{i}} (o : option@{j} A) : option@{k} A := +Definition foo'' {A : Type@{i}} (o : option@{j} A) : option@{k} A := o. -(* Inductive prod (A : Type{i}) (B : Type{j}) := *) +(* Inductive prod (A : Type@{i}) (B : Type@{j}) := *) (* | pair : A -> B -> prod A B. *) -(* Definition snd {A : Type{i}} (B : Type{j}) (p : prod A B) : B := *) +(* Definition snd {A : Type@{i}} (B : Type@{j}) (p : prod A B) : B := *) (* match p with *) (* | pair _ _ a b => b *) (* end. *) -(* Definition snd' {A : Type{i}} (B : Type{i}) (p : prod A B) : B := *) +(* Definition snd' {A : Type@{i}} (B : Type@{i}) (p : prod A B) : B := *) (* match p with *) (* | pair _ _ a b => b *) (* end. *) @@ -47,44 +47,44 @@ Definition foo'' {A : Type{i}} (o : option@{j} A) : option@{k} A := (* Inductive paths {A : Type} : A -> A -> Type := *) (* | idpath (a : A) : paths a a. *) -Inductive paths {A : Type{i}} : A -> A -> Type{i} := +Inductive paths {A : Type@{i}} : A -> A -> Type@{i} := | idpath (a : A) : paths a a. Definition Funext := forall (A : Type) (B : A -> Type), forall f g : (forall a, B a), (forall x : A, paths (f x) (g x)) -> paths f g. -Definition paths_lift_closed (A : Type{i}) (x y : A) : +Definition paths_lift_closed (A : Type@{i}) (x y : A) : paths x y -> @paths (liftle@{j Type} A) x y. Proof. intros. destruct X. exact (idpath _). Defined. -Definition paths_lift (A : Type{i}) (x y : A) : +Definition paths_lift (A : Type@{i}) (x y : A) : paths x y -> paths@{j} x y. Proof. intros. destruct X. exact (idpath _). Defined. -Definition paths_lift_closed_strict (A : Type{i}) (x y : A) : +Definition paths_lift_closed_strict (A : Type@{i}) (x y : A) : paths x y -> @paths (liftlt@{j Type} A) x y. Proof. intros. destruct X. exact (idpath _). Defined. -Definition paths_downward_closed_le (A : Type{i}) (x y : A) : +Definition paths_downward_closed_le (A : Type@{i}) (x y : A) : paths@{j} (A:=liftle@{i j} A) x y -> paths@{i} x y. Proof. intros. destruct X. exact (idpath _). Defined. -Definition paths_downward_closed_lt (A : Type{i}) (x y : A) : +Definition paths_downward_closed_lt (A : Type@{i}) (x y : A) : @paths (liftlt@{j i} A) x y -> paths x y. Proof. intros. destruct X. exact (idpath _). Defined. -Definition paths_downward_closed_lt_nolift (A : Type{i}) (x y : A) : +Definition paths_downward_closed_lt_nolift (A : Type@{i}) (x y : A) : paths@{j} x y -> paths x y. Proof. intros. destruct X. exact (idpath _). |