diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2006-03-05 10:59:47 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2006-03-05 10:59:47 +0000 |
commit | 4577b6684e8a725d21c37e5fec627bdec198594d (patch) | |
tree | c750b16be1c4bbbba5ce1b5194fdca839eb82681 | |
parent | 73a86067cdb72a260164caec8d30029de3c0b10e (diff) |
Renommage du IP classique pour éviter confusion avec IP constructif
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8132 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r-- | theories/Logic/ChoiceFacts.v | 24 |
1 files changed, 12 insertions, 12 deletions
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v index 723434512..5180bf5b2 100644 --- a/theories/Logic/ChoiceFacts.v +++ b/theories/Logic/ChoiceFacts.v @@ -23,19 +23,19 @@ Variables A B :Type. Definition RelationalChoice := forall (R:A -> B -> Prop), - (forall x:A, exists y : B, R x y) -> + (forall x:A, exists y : B, R x y) -> exists R' : A -> B -> Prop, (forall x:A, - exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). + exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). Definition FunctionalChoice := forall (R:A -> B -> Prop), - (forall x:A, exists y : B, R x y) -> + (forall x:A, exists y : B, R x y) -> exists f : A -> B, (forall x:A, R x (f x)). Definition ParamDefiniteDescription := forall (R:A -> B -> Prop), - (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) -> + (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) -> exists f : A -> B, (forall x:A, R x (f x)). Lemma description_rel_choice_imp_funct_choice : @@ -92,11 +92,11 @@ End ChoiceEquivalences. Definition GuardedRelationalChoice (A B:Type) := forall (P:A -> Prop) (R:A -> B -> Prop), - (forall x:A, P x -> exists y : B, R x y) -> + (forall x:A, P x -> exists y : B, R x y) -> exists R' : A -> B -> Prop, (forall x:A, P x -> - exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). + exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')). Definition ProofIrrelevance := forall (A:Prop) (a1 a2:A), a1 = a2. @@ -110,7 +110,7 @@ destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as [R' H0]. intros [x HPx]. destruct (H x HPx) as [y HRxy]. exists y; exact HRxy. -set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y). +set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y). exists R''; intros x HPx. destruct (H0 (existT P x HPx)) as [y [HRxy [HR'xy Huniq]]]. exists y. split. @@ -125,13 +125,13 @@ exists y. split. exact HR'xy'. Qed. -Definition IndependenceOfPremises := +Definition IndependenceOfGeneralPremises := forall (A:Type) (P:A -> Prop) (Q:Prop), - (Q -> exists x : _, P x) -> exists x : _, Q -> P x. + (Q -> exists x, P x) -> exists x, Q -> P x. -Lemma rel_choice_indep_of_premises_imp_guarded_rel_choice : +Lemma rel_choice_indep_of_general_premises_imp_guarded_rel_choice : forall A B, RelationalChoice A B -> - IndependenceOfPremises -> GuardedRelationalChoice A B. + IndependenceOfGeneralPremises -> GuardedRelationalChoice A B. Proof. intros A B RelCh IndPrem. red in |- *; intros P R H. @@ -200,7 +200,7 @@ destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0]; Qed. Definition FunctionalChoice_on (A B:Type) (R:A->B->Prop) := - (forall x:A, exists y : B, R x y) -> + (forall x:A, exists y : B, R x y) -> exists f : A -> B, (forall x:A, R x (f x)). Lemma classical_denumerable_description_imp_fun_choice : |