aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-08-24 08:47:17 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-08-24 08:47:17 +0000
commit3c20af573b22e470589e8d19e91a798b3fdbc917 (patch)
treecfb6c3e11550071202bdbb6b41a127e54df4e05a
parent60aa4e574f5b916f8913e49d0d11570e41ef00fa (diff)
MAJ JMeq sur Type + typos (sur propositions de Pierre Castéran)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9079 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--doc/RecTutorial/RecTutorial.tex10
-rw-r--r--doc/RecTutorial/RecTutorial.v167
2 files changed, 90 insertions, 87 deletions
diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex
index a80f6cacb..df8bc9f10 100644
--- a/doc/RecTutorial/RecTutorial.tex
+++ b/doc/RecTutorial/RecTutorial.tex
@@ -518,7 +518,7 @@ of {\coq}, in which a general parameter $a$ of an inductive
type $I$ had to appear only in applications of the form $I\,\dots\,a$.
Since version $8.1$, if $a$ is a general parameter of an inductive
-type $I$, the type of an argument of a construtor of $I$ may be
+type $I$, the type of an argument of a constructor of $I$ may be
of the form $I\,\dots\,t_a$ , where $t_a$ is any term.
Notice that the final type of the constructors must be of the form
$I\,\dots\,a$, since these constructors describe how to form
@@ -2848,7 +2848,7 @@ For Acc_intro: Arguments A, R are implicit
\dots
\end{alltt}
-\noindent This inductive predicate characterize those elements $x$ of
+\noindent This inductive predicate characterizes those elements $x$ of
$A$ such that any descending $R$-chain $\ldots x_2\;R\;x_1\;R\;x$
starting from $x$ is finite. A well-founded relation is a relation
such that all the elements of $A$ are accessible.
@@ -3121,11 +3121,11 @@ equality \citecoq{JMeq} \cite{conor:motive}
which allows us to consider terms of different types, even if this
equality can only be proven for terms in the same type.
The axiom \citecoq{JMeq\_eq}, from the library \citecoq{JMeq} allows us to convert a
-heterogeneous equality to a standard one \footnote{At this date (July 28th 2006), the type of JMeq still uses Set instead of Type; the two following theorems are thus less generic than we can expect}.
+heterogeneous equality to a standard one.
\begin{alltt}
Lemma vector0_is_vnil_aux :
- {\prodsym} (A:Set)(n:nat)(v:vector A n),
+ {\prodsym} (A:Type)(n:nat)(v:vector A n),
n= 0 {\arrow} JMeq v (Vnil A).
Proof.
destruct v.
@@ -3137,7 +3137,7 @@ Qed.
Our property of vectors of null length can be easily proven:
\begin{alltt}
-Lemma vector0_is_vnil : {\prodsym} (A:Set)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : {\prodsym} (A:Type)(v:vector A 0), v = Vnil A.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
trivial.
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
index d79b85df1..7bede1737 100644
--- a/doc/RecTutorial/RecTutorial.v
+++ b/doc/RecTutorial/RecTutorial.v
@@ -1,3 +1,7 @@
+Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3).
+
+
+
Inductive nat : Set :=
| O : nat
| S : nat->nat.
@@ -31,10 +35,17 @@ Qed.
Lemma zero_lt_three : 0 < 3.
Proof.
- unfold lt.
repeat constructor.
Qed.
+Print zero_lt_three.
+
+Inductive le'(n:nat):nat -> Prop :=
+ | le'_n : le' n n
+ | le'_S : forall p, le' (S n) p -> le' n p.
+
+Hint Constructors le'.
+
Require Import List.
@@ -46,12 +57,15 @@ Check (nil (A:=nat)).
Check (nil (A:= nat -> nat)).
-Check (fun A: Set => (cons (A:=A))).
+Check (fun A: Type => (cons (A:=A))).
Check (cons 3 (cons 2 nil)).
+Check (nat :: bool ::nil).
+Check ((3<=4) :: True ::nil).
+Check (Prop::Set::nil).
Require Import Bvector.
@@ -59,22 +73,10 @@ Print vector.
Check (Vnil nat).
-Check (fun (A:Set)(a:A)=> Vcons _ a _ (Vnil _)).
+Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)).
Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
-
-
-
-
-
-
-
-
-
-
-
-
Lemma eq_3_3 : 2 + 1 = 3.
Proof.
reflexivity.
@@ -151,10 +153,10 @@ Extraction max.
-Inductive tree(A:Set) : Set :=
+Inductive tree(A:Type) : Type :=
node : A -> forest A -> tree A
with
- forest (A: Set) : Set :=
+ forest (A: Type) : Type :=
nochild : forest A |
addchild : tree A -> forest A -> forest A.
@@ -315,13 +317,13 @@ Proof.
Qed.
Definition Vtail_total
- (A : Set) (n : nat) (v : vector A n) : vector A (pred n):=
+ (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
match v in (vector _ n0) return (vector A (pred n0)) with
| Vnil => Vnil A
| Vcons _ n0 v0 => v0
end.
-Definition Vtail' (A:Set)(n:nat)(v:vector A n) : vector A (pred n).
+Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n).
intros A n v; case v.
simpl.
exact (Vnil A).
@@ -461,9 +463,7 @@ Inductive ltree (A:Set) : Set :=
Inductive prop : Prop :=
prop_intro : Prop -> prop.
-Lemma prop_inject: prop.
-Proof prop_intro prop.
-
+Check (prop_intro prop).
Inductive ex_Prop (P : Prop -> Prop) : Prop :=
exP_intro : forall X : Prop, P X -> ex_Prop P.
@@ -492,27 +492,6 @@ because proofs can be eliminated only to build proofs
*)
-(*
-Check (match prop_inject with (prop_intro P p) => P end).
-
-Error:
-Incorrect elimination of "prop_inject" in the inductive type
-"prop", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs
-
-*)
-Print prop_inject.
-
-(*
-prop_inject =
-prop_inject = prop_intro prop (fun H : prop => H)
- : prop
-*)
-
Inductive typ : Type :=
typ_intro : Type -> typ.
@@ -645,7 +624,7 @@ Qed.
apply inj_pred with (n:= S n) (m := S m); assumption.
Qed.
-Lemma list_inject : forall (A:Set)(a b :A)(l l':list A),
+Lemma list_inject : forall (A:Type)(a b :A)(l l':list A),
a :: b :: l = b :: a :: l' -> a = b /\ l = l'.
Proof.
intros A a b l l' e.
@@ -812,20 +791,20 @@ Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=
End Principle_of_Double_Induction.
Section Principle_of_Double_Recursion.
-Variable P : nat -> nat -> Set.
+Variable P : nat -> nat -> Type.
Hypothesis base_case1 : forall x:nat, P 0 x.
Hypothesis base_case2 : forall x:nat, P (S x) 0.
Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
-Fixpoint nat_double_rec (n m:nat){struct n} : P n m :=
+Fixpoint nat_double_rect (n m:nat){struct n} : P n m :=
match n, m return P n m with
| 0 , x => base_case1 x
| (S x), 0 => base_case2 x
- | (S x), (S y) => inductive_step x y (nat_double_rec x y)
+ | (S x), (S y) => inductive_step x y (nat_double_rect x y)
end.
End Principle_of_Double_Recursion.
Definition min : nat -> nat -> nat :=
- nat_double_rec (fun (x y:nat) => nat)
+ nat_double_rect (fun (x y:nat) => nat)
(fun (x:nat) => 0)
(fun (y:nat) => 0)
(fun (x y r:nat) => S r).
@@ -846,10 +825,10 @@ Qed.
Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}.
Proof.
intros n p.
- apply nat_double_rec with (P:= fun (n q:nat) => {q=p}+{q <> p}).
+ apply nat_double_rect with (P:= fun (n q:nat) => {q=p}+{q <> p}).
Undo.
pattern p,n.
- elim n using nat_double_rec.
+ elim n using nat_double_rect.
destruct x; auto.
destruct x; auto.
intros n0 m H; case H.
@@ -861,6 +840,28 @@ Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}.
decide equality.
Defined.
+
+
+Require Import Le.
+Lemma le'_le : forall n p, le' n p -> n <= p.
+Proof.
+ induction 1;auto with arith.
+Qed.
+
+Lemma le'_n_Sp : forall n p, le' n p -> le' n (S p).
+Proof.
+ induction 1;auto.
+Qed.
+
+Hint Resolve le'_n_Sp.
+
+
+Lemma le_le' : forall n p, n<=p -> le' n p.
+Proof.
+ induction 1;auto with arith.
+Qed.
+
+
Print Acc.
@@ -968,13 +969,13 @@ let rec div_aux x y =
| Right -> div_aux (minus x y) y)
*)
-Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
Proof.
intros A v;inversion v.
Abort.
(*
- Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n),
+ Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
n= 0 -> v = Vnil A.
Toplevel input, characters 40281-40287
@@ -990,7 +991,10 @@ The term "Vnil A" has type "vector A 0" while it is expected to have type
*)
Require Import JMeq.
-Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n),
+
+(* On devrait changer Set en Type ? *)
+
+Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
n= 0 -> JMeq v (Vnil A).
Proof.
destruct v.
@@ -998,7 +1002,7 @@ Proof.
intro; discriminate.
Qed.
-Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A.
+Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
Proof.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
@@ -1011,20 +1015,20 @@ Implicit Arguments Vnil [A].
Implicit Arguments Vhead [A n].
Implicit Arguments Vtail [A n].
-Definition Vid : forall (A : Set)(n:nat), vector A n -> vector A n.
+Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
Proof.
destruct n; intro v.
exact Vnil.
exact (Vcons (Vhead v) (Vtail v)).
Defined.
-Eval simpl in (fun (A:Set)(v:vector A 0) => (Vid _ _ v)).
+Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)).
-Eval simpl in (fun (A:Set)(v:vector A 0) => v).
+Eval simpl in (fun (A:Type)(v:vector A 0) => v).
-Lemma Vid_eq : forall (n:nat) (A:Set)(v:vector A n), v=(Vid _ n v).
+Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
Proof.
destruct v.
reflexivity.
@@ -1040,7 +1044,7 @@ Defined.
Theorem decomp :
- forall (A : Set) (n : nat) (v : vector A (S n)),
+ forall (A : Type) (n : nat) (v : vector A (S n)),
v = Vcons (Vhead v) (Vtail v).
Proof.
intros.
@@ -1051,7 +1055,7 @@ Defined.
Definition vector_double_rect :
- forall (A:Set) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
+ forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
P 0 Vnil Vnil ->
(forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
P (S n) (Vcons a v1) (Vcons b v2)) ->
@@ -1071,7 +1075,7 @@ Definition bitwise_or n v1 v2 : vector bool n :=
(fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
-Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:vector A p){struct v}
+Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v}
: option A :=
match n,v with
_ , Vnil => None
@@ -1097,10 +1101,10 @@ Qed.
Set Implicit Arguments.
- CoInductive Stream (A:Set) : Set :=
+ CoInductive Stream (A:Type) : Type :=
| Cons : A -> Stream A -> Stream A.
- CoInductive LList (A: Set) : Set :=
+ CoInductive LList (A: Type) : Type :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
@@ -1108,25 +1112,25 @@ Qed.
- Definition head (A:Set)(s : Stream A) := match s with Cons a s' => a end.
+ Definition head (A:Type)(s : Stream A) := match s with Cons a s' => a end.
- Definition tail (A : Set)(s : Stream A) :=
+ Definition tail (A : Type)(s : Stream A) :=
match s with Cons a s' => s' end.
- CoFixpoint repeat (A:Set)(a:A) : Stream A := Cons a (repeat a).
+ CoFixpoint repeat (A:Type)(a:A) : Stream A := Cons a (repeat a).
- CoFixpoint iterate (A: Set)(f: A -> A)(a : A) : Stream A:=
+ CoFixpoint iterate (A: Type)(f: A -> A)(a : A) : Stream A:=
Cons a (iterate f (f a)).
- CoFixpoint map (A B:Set)(f: A -> B)(s : Stream A) : Stream B:=
+ CoFixpoint map (A B:Type)(f: A -> B)(s : Stream A) : Stream B:=
match s with Cons a tl => Cons (f a) (map f tl) end.
-Eval simpl in (fun (A:Set)(a:A) => repeat a).
+Eval simpl in (fun (A:Type)(a:A) => repeat a).
-Eval simpl in (fun (A:Set)(a:A) => head (repeat a)).
+Eval simpl in (fun (A:Type)(a:A) => head (repeat a)).
-CoInductive EqSt (A: Set) : Stream A -> Stream A -> Prop :=
+CoInductive EqSt (A: Type) : Stream A -> Stream A -> Prop :=
eqst : forall s1 s2: Stream A,
head s1 = head s2 ->
EqSt (tail s1) (tail s2) ->
@@ -1134,7 +1138,7 @@ CoInductive EqSt (A: Set) : Stream A -> Stream A -> Prop :=
Section Parks_Principle.
-Variable A : Set.
+Variable A : Type.
Variable R : Stream A -> Stream A -> Prop.
Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 ->
head s1 = head s2.
@@ -1149,7 +1153,7 @@ CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 ->
End Parks_Principle.
-Theorem map_iterate : forall (A:Set)(f:A->A)(x:A),
+Theorem map_iterate : forall (A:Type)(f:A->A)(x:A),
EqSt (iterate f (f x)) (map f (iterate f x)).
Proof.
intros A f x.
@@ -1167,7 +1171,7 @@ Ltac infiniteproof f :=
cofix f; constructor; [clear f| simpl; try (apply f; clear f)].
-Theorem map_iterate' : forall (A:Set)(f:A->A)(x:A),
+Theorem map_iterate' : forall (A:Type)(f:A->A)(x:A),
EqSt (iterate f (f x)) (map f (iterate f x)).
infiniteproof map_iterate'.
reflexivity.
@@ -1176,12 +1180,12 @@ Qed.
Implicit Arguments LNil [A].
-Lemma Lnil_not_Lcons : forall (A:Set)(a:A)(l:LList A),
+Lemma Lnil_not_Lcons : forall (A:Type)(a:A)(l:LList A),
LNil <> (LCons a l).
intros;discriminate.
Qed.
-Lemma injection_demo : forall (A:Set)(a b : A)(l l': LList A),
+Lemma injection_demo : forall (A:Type)(a b : A)(l l': LList A),
LCons a (LCons b l) = LCons b (LCons a l') ->
a = b /\ l = l'.
Proof.
@@ -1189,19 +1193,19 @@ Proof.
Qed.
-Inductive Finite (A:Set) : LList A -> Prop :=
+Inductive Finite (A:Type) : LList A -> Prop :=
| Lnil_fin : Finite (LNil (A:=A))
| Lcons_fin : forall a l, Finite l -> Finite (LCons a l).
-CoInductive Infinite (A:Set) : LList A -> Prop :=
+CoInductive Infinite (A:Type) : LList A -> Prop :=
| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l).
-Lemma LNil_not_Infinite : forall (A:Set), ~ Infinite (LNil (A:=A)).
+Lemma LNil_not_Infinite : forall (A:Type), ~ Infinite (LNil (A:=A)).
Proof.
intros A H;inversion H.
Qed.
-Lemma Finite_not_Infinite : forall (A:Set)(l:LList A),
+Lemma Finite_not_Infinite : forall (A:Type)(l:LList A),
Finite l -> ~ Infinite l.
Proof.
intros A l H; elim H.
@@ -1211,7 +1215,7 @@ Proof.
trivial.
Qed.
-Lemma Not_Finite_Infinite : forall (A:Set)(l:LList A),
+Lemma Not_Finite_Infinite : forall (A:Type)(l:LList A),
~ Finite l -> Infinite l.
Proof.
cofix H.
@@ -1226,4 +1230,3 @@ Qed.
-