aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar mohring <mohring@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-12-21 15:46:14 +0000
committerGravatar mohring <mohring@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-12-21 15:46:14 +0000
commit37adfe19f1925ae66f63eb7655475c2008b816fa (patch)
tree9432636d948aa8367ef1ed55866affbd0f719af9
parent9460bde3509f8e0cc98c32401242f4e9154ac75d (diff)
*** empty log message ***
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8433 85f007b7-540e-0410-9357-904b9bb8a0f7
-rwxr-xr-xdoc/RefMan-cic.tex39
1 files changed, 27 insertions, 12 deletions
diff --git a/doc/RefMan-cic.tex b/doc/RefMan-cic.tex
index b8f445968..006a3cd43 100755
--- a/doc/RefMan-cic.tex
+++ b/doc/RefMan-cic.tex
@@ -1166,7 +1166,7 @@ only constructors of $I$.
\end{description}
\paragraph{Example.}
-For \List\ and \Length\ the typing rules for the {\tt Case} expression
+For \List\ and \Length\ the typing rules for the {\tt match} expression
are (writing just $t:M$ instead of \WTEG{t}{M}, the environment and
context being the same in all the judgments).
@@ -1176,7 +1176,7 @@ context being the same in all the judgments).
\[\frac{
\begin{array}[b]{c}
-H:(\LengthA~L~N) \\ P:(l:\ListA)(n:\nat)(\LengthA~l~n)\ra
+H:(\LengthA~L~N) \\ P:\forall l:\ListA, \forall n:\nat, (\LengthA~l~n)\ra
\Prop\\
f_1:(P~(\Nil~A)~\nO~\LNil) \\
f_2:\forall a:A, \forall l:\ListA, \forall n:\nat, \forall
@@ -1203,10 +1203,21 @@ to the general reduction rule:
\label{Fix-term} \index{Fix@{\tt Fix}}
The second operator for elimination is fixpoint definition.
This fixpoint may involve several mutually recursive definitions.
-The basic syntax for a recursive set of declarations is
-\[\Fix{}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}\]
+The basic concrete syntax for a recursive set of mutually recursive
+declarations is (with $\Gamma_i$ contexts)~:
+\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with} f_n
+(\Gamma_n) :A_n:=t_n\]
The terms are obtained by projections from this set of declarations
-and are written $\Fix{f_i}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}$
+and are written
+\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with} f_n
+(\Gamma_n) :A_n:=t_n~\kw{for}~f_i\]
+In the inference rules, we represent such a
+term by
+\[\Fix{f_i}{f_1:A_1':=t_1' \ldots f_n:A_n':=t_n'}\]
+with $t_i'$ (resp. $A_i'$) representing the term $t_i$ abstracted
+(resp. generalised) with
+respect to the bindings in the context $\Gamma_i$, namely
+$t_i'=\lb \Gamma_i \mto t_i$ and $A_i'=\forall \Gamma_i, A_i$.
\subsubsection{Typing rule}
The typing rule is the expected one for a fixpoint.
@@ -1223,18 +1234,20 @@ will lead to proofs of absurdity.
The basic scheme of recursion that should be allowed is the one needed for
defining primitive
-recursive functionals. In that case the fixpoint enjoys special
+recursive functionals. In that case the fixpoint enjoys a special
syntactic restriction, namely one of the arguments belongs to an
inductive type, the function starts with a case analysis and recursive
calls are done on variables coming from patterns and representing subterms.
For instance in the case of natural numbers, a proof of the induction
principle of type
-\[(P:\nat\ra\Prop)(P~\nO)\ra((n:\nat)(P~n)\ra(P~(\nS~n)))\ra(n:\nat)(P~n)\]
+\[\forall P:\nat\ra\Prop, (P~\nO)\ra((n:\nat)(P~n)\ra(P~(\nS~n)))\ra(n:\nat)(P~n)\]
can be represented by the term:
\[\begin{array}{l}
-[P:\nat\ra\Prop][f:(P~\nO)][g:\forall n:\nat, (P~n)\ra(P~(\nS~n))]\\
-\Fix{h}{h:\forall n:\nat, (P~n):=\lb n:\nat\mto \Case{P}{n}{f~[p:\nat](g~p~(h~p))}}
+\lb P:\nat\ra\Prop\mto\lb f:(P~\nO)\mto \lb g:(\forall n:\nat,
+(P~n)\ra(P~(\nS~n))) \mto\\
+\Fix{h}{h:\forall n:\nat, (P~n):=\lb n:\nat\mto \Case{P}{n}{f~\lb
+ p:\nat\mto (g~p~(h~p))}}
\end{array}
\]
@@ -1341,7 +1354,8 @@ Abort.
\end{coq_example}
But assuming the definition of a son function from \tree\ to \forest:
\begin{coq_example}
-Definition sont (t:tree) : forest := let (f) := t in f.
+Definition sont (t:tree) : forest
+ := let (f) := t in f.
\end{coq_example}
The following is not a conversion but can be proved after a case analysis.
\begin{coq_example}
@@ -1397,6 +1411,7 @@ The implementation contains also coinductive definitions, which are
types inhabited by infinite objects.
More information on coinductive definitions can be found
in~\cite{Gimenez95b,Gim98}.
+%They are described inchapter~\ref{Coinductives}.
\section{\iCIC : the Calculus of Inductive Construction with
impredicative \Set}\label{impredicativity}
@@ -1414,7 +1429,7 @@ is rejected.
***)
\end{coq_eval}
\begin{coq_example}
-Definition id: Set := forall (X:Set),X->X.
+Definition id: Set := forall X:Set,X->X.
\end{coq_example}
while it will type-check, if one use instead the \texttt{coqtop
-impredicative-set} command.
@@ -1444,7 +1459,7 @@ impredicative system for sort \Set{} become~:
{\compat{I:\Set}{I\ra s}}}
\end{description}
-%They are described inchapter~\ref{Coinductives}.
+
% $Id$