aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-07-04 13:50:15 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-07-04 13:50:15 +0000
commit2bbec9bbe0aeb472e2596cebc7f76c724a8c807a (patch)
tree4f26a050c32236af3c1bc5ad621165f13400465b
parentd2cb529b790723c2315b980197e2846c14af1eeb (diff)
Ajout espacement autour des symboles latex a l'attention de 'hevea -nosymb' + modifs diverses de la présentation des règles d'inférence
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9001 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--doc/refman/RefMan-cic.tex42
1 files changed, 21 insertions, 21 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
index 8d44dc221..50fb7c08e 100644
--- a/doc/refman/RefMan-cic.tex
+++ b/doc/refman/RefMan-cic.tex
@@ -218,10 +218,10 @@ either an assumption, written $x:T$ ($T$ is a type) or a definition,
written $x:=t:T$. We use brackets to write contexts. A
typical example is $[x:T;y:=u:U;z:V]$. Notice that the variables
declared in a context must be distinct. If $\Gamma$ declares some $x$,
-we write $x \in\Gamma$. By writing $(x:T)\in\Gamma$ we mean that
+we write $x \in \Gamma$. By writing $(x:T) \in \Gamma$ we mean that
either $x:T$ is an assumption in $\Gamma$ or that there exists some $t$ such
that $x:=t:T$ is a definition in $\Gamma$. If $\Gamma$ defines some
-$x:=t:T$, we also write $(x:=t:T)\in\Gamma$. Contexts must be
+$x:=t:T$, we also write $(x:=t:T) \in \Gamma$. Contexts must be
themselves {\em well formed}. For the rest of the chapter, the
notation $\Gamma::(y:T)$ (resp. $\Gamma::(y:=t:T)$) denotes the context
$\Gamma$ enriched with the declaration $y:T$ (resp. $y:=t:T$). The
@@ -233,8 +233,8 @@ notation $[]$ denotes the empty context. \index{Context}
We define the inclusion of two contexts $\Gamma$ and $\Delta$ (written
as $\Gamma \subset \Delta$) as the property, for all variable $x$,
-type $T$ and term $t$, if $(x:T) \in \Gamma$ then $(x:T)\in \Delta$
-and if $(x:=t:T) \in \Gamma$ then $(x:=t:T)\in \Delta$.
+type $T$ and term $t$, if $(x:T) \in \Gamma$ then $(x:T) \in \Delta$
+and if $(x:=t:T) \in \Gamma$ then $(x:=t:T) \in \Delta$.
%We write
% $|\Delta|$ for the length of the context $\Delta$, that is for the number
% of declarations (assumptions or definitions) in $\Delta$.
@@ -288,28 +288,30 @@ be derived from the following rules.
\begin{description}
\item[W-E] \inference{\WF{[]}{[]}}
\item[W-S] % Ce n'est pas vrai : x peut apparaitre plusieurs fois dans Gamma
-\inference{\frac{\WTEG{T}{s}~~~~s\in \Sort~~~~x \not\in
+\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~x \not\in
\Gamma % \cup E
}
{\WFE{\Gamma::(x:T)}}~~~~~
\frac{\WTEG{t}{T}~~~~x \not\in
\Gamma % \cup E
}{\WFE{\Gamma::(x:=t:T)}}}
-\item[Def] \inference{\frac{\WTEG{t}{T}~~~c \notin E\cup \Gamma}
+\item[Def] \inference{\frac{\WTEG{t}{T}~~~c \notin E \cup \Gamma}
{\WF{E;\Def{\Gamma}{c}{t}{T}}{\Gamma}}}
+\item[Assum] \inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~c \notin E \cup \Gamma}
+ {\WF{E;\Assum{\Gamma}{c}{T}}{\Gamma}}}
\item[Ax] \index{Typing rules!Ax}
\inference{\frac{\WFE{\Gamma}}{\WTEG{\Prop}{\Type(p)}}~~~~~
\frac{\WFE{\Gamma}}{\WTEG{\Set}{\Type(q)}}}
\inference{\frac{\WFE{\Gamma}~~~~i<j}{\WTEG{\Type(i)}{\Type(j)}}}
\item[Var]\index{Typing rules!Var}
- \inference{\frac{ \WFE{\Gamma}~~~~~(x:T)\in\Gamma~~\mbox{or}~~(x:=t:T)\in\Gamma~\mbox{for some $t$}}{\WTEG{x}{T}}}
+ \inference{\frac{ \WFE{\Gamma}~~~~~(x:T) \in \Gamma~~\mbox{or}~~(x:=t:T) \in \Gamma~\mbox{for some $t$}}{\WTEG{x}{T}}}
\item[Const] \index{Typing rules!Const}
-\inference{\frac{\WFE{\Gamma}~~~~(c:T) \in E}{\WTEG{c}{T}}}
+\inference{\frac{\WFE{\Gamma}~~~~(c:T) \in E~~\mbox{or}~~(c:=t:T) \in E~\mbox{for some $t$} }{\WTEG{c}{T}}}
\item[Prod] \index{Typing rules!Prod}
\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~
\WTE{\Gamma::(x:T)}{U}{\Prop}}
{ \WTEG{\forall~x:T,U}{\Prop}}}
-\inference{\frac{\WTEG{T}{s}~~~~s\in\{\Prop, \Set\}~~~~~~
+\inference{\frac{\WTEG{T}{s}~~~~s \in\{\Prop, \Set\}~~~~~~
\WTE{\Gamma::(x:T)}{U}{\Set}}
{ \WTEG{\forall~x:T,U}{\Set}}}
\inference{\frac{\WTEG{T}{\Type(i)}~~~~i\leq k~~~
@@ -373,7 +375,7 @@ environment. It is legal to identify such a reference with its value,
that is to expand (or unfold) it into its value. This
reduction is called $\delta$-reduction and shows as follows.
-$$\WTEGRED{x}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(x:=t:T)\in\Gamma$}~~~~~~~~~\WTEGRED{c}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(c:=t:T)\in E$}$$
+$$\WTEGRED{x}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(x:=t:T) \in \Gamma$}~~~~~~~~~\WTEGRED{c}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(c:=t:T) \in E$}$$
\paragraph{$\zeta$-reduction.}
@@ -553,15 +555,13 @@ represented by:
\List}\]
Assuming
$\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
- $[c_1:C_1;\ldots;c_n:C_n]$, the general typing rules are:
+ $[c_1:C_1;\ldots;c_n:C_n]$, the general typing rules are,
+ for $1\leq j\leq k$ and $1\leq i\leq n$:
\bigskip
-\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E
- ~~j=1\ldots k}{(I_j:A_j) \in E}}
+\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(I_j:A_j) \in E}}
-\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E
- ~~~~i=1.. n}
- {(c_i:C_i)\in E}}
+\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(c_i:C_i) \in E}}
\subsubsection{Inductive definitions with parameters}
@@ -593,11 +593,11 @@ p_1:P_1,\ldots,\forall p_r:P_r,\forall a_1:A_1, \ldots \forall a_n:A_n,
with $I$ one of the inductive definitions in $\Gamma_I$.
We say that $n$ is the number of real arguments of the constructor
$c$.
-\paragraph{Context of parameters}
+\paragraph{Context of parameters.}
If an inductive definition $\NInd{\Gamma}{\Gamma_I}{\Gamma_C}$ admits
$r$ inductive parameters, then there exists a context $\Gamma_P$ of
size $r$, such that $\Gamma_P=p_1:P_1;\ldots;p_r:P_r$ and
-if $(t:A)\in\Gamma_I,\Gamma_C$ then $A$ can be written as
+if $(t:A) \in \Gamma_I,\Gamma_C$ then $A$ can be written as
$\forall p_1:P_1,\ldots \forall p_r:P_r,A'$.
We call $\Gamma_P$ the context of parameters of the inductive
definition and use the notation $\forall \Gamma_P,A'$ for the term $A$.
@@ -741,7 +741,7 @@ contains an inductive declaration.
\inference{\frac{\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E
~~~~i=1.. n}
- {(c_i:C_i)\in E}}
+ {(c_i:C_i) \in E}}
\end{description}
\paragraph{Example.}
@@ -1298,7 +1298,7 @@ eliminations are allowed.
\item[\Prop-extended]
\inference{
\frac{I \mbox{~is an empty or singleton
- definition}~~~s\in\Sort}{\compat{I:\Prop}{I\ra s}}
+ definition}~~~s \in \Sort}{\compat{I:\Prop}{I\ra s}}
}
\end{description}
@@ -1661,7 +1661,7 @@ The major change in the theory concerns the rule for product formation
in the sort \Set, which is extended to a domain in any sort~:
\begin{description}
\item [Prod] \index{Typing rules!Prod (impredicative Set)}
-\inference{\frac{\WTEG{T}{s}~~~~s\in\Sort~~~~~~
+\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~~~
\WTE{\Gamma::(x:T)}{U}{\Set}}
{ \WTEG{\forall~x:T,U}{\Set}}}
\end{description}