aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2014-10-03 14:36:36 +0200
committerGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2014-10-03 14:37:25 +0200
commit29844f673b5af1b0e50efc7b41cf5660d0a37d03 (patch)
tree7e0f92a9dcdad675327b8f451f5a57488f28c4f7
parentf911ad91a46ea6445a533d76ffa388332dd2ae30 (diff)
Test for bug #3652 fixed in 0fb36157b9ba
-rw-r--r--test-suite/bugs/closed/3652.v101
1 files changed, 101 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/3652.v b/test-suite/bugs/closed/3652.v
new file mode 100644
index 000000000..86e061376
--- /dev/null
+++ b/test-suite/bugs/closed/3652.v
@@ -0,0 +1,101 @@
+Require Setoid.
+Require ZArith.
+Import ZArith.
+
+Inductive Erasable(A : Set) : Prop :=
+ erasable: A -> Erasable A.
+
+Arguments erasable [A] _.
+
+Hint Constructors Erasable.
+
+Scheme Erasable_elim := Induction for Erasable Sort Prop.
+
+Notation "## T" := (Erasable T) (at level 1, format "## T") : Erasable_scope.
+Notation "# x" := (erasable x) (at level 1, format "# x") : Erasable_scope.
+Open Scope Erasable_scope.
+
+Axiom Erasable_inj : forall {A : Set}{a b : A}, #a=#b -> a=b.
+
+Lemma Erasable_rw : forall (A: Set)(a b : A), (#a=#b) <-> (a=b).
+Proof.
+ intros A a b.
+ split.
+ - apply Erasable_inj.
+ - congruence.
+Qed.
+
+Open Scope Z_scope.
+Opaque Z.mul.
+
+Infix "^" := Zpower_nat : Z_scope.
+
+Notation "f ; v <- x" := (let (v) := x in f)
+ (at level 199, left associativity) : Erasable_scope.
+Notation "f ; < v" := (f ; v <- v)
+ (at level 199, left associativity) : Erasable_scope.
+Notation "f |# v <- x" := (#f ; v <- x)
+ (at level 199, left associativity) : Erasable_scope.
+Notation "f |# < v" := (#f ; < v)
+ (at level 199, left associativity) : Erasable_scope.
+
+Ltac name_evars id :=
+ repeat match goal with |- context[?V] =>
+ is_evar V; let H := fresh id in set (H:=V) in * end.
+
+Lemma Twoto0 : 2^0 = 1.
+Proof. compute. reflexivity. Qed.
+
+Ltac ring_simplify' := rewrite ?Twoto0; ring_simplify.
+
+Definition mp2a1s(x : Z)(n : nat) := x * 2^n + (2^n-1).
+
+Hint Unfold mp2a1s.
+
+Definition zotval(n1s : nat)(is2 : bool)(next_value : Z) : Z :=
+ 2 * mp2a1s next_value n1s + if is2 then 2 else 0.
+
+Inductive zot'(eis2 : ##bool)(value : ##Z) : Set :=
+| Zot'(is2 : bool)
+ (iseq : eis2=#is2)
+ {next_is2 : ##bool}
+ (ok : is2=true -> next_is2=#false)
+ {next_value : ##Z}
+ (n1s : nat)
+ (veq : value = (zotval n1s is2 next_value |#<next_value))
+ (next : zot' next_is2 next_value)
+ : zot' eis2 value.
+
+Definition de2{eis2 value}(z : zot' eis2 value) : zot' #false value.
+Proof.
+ case z.
+ intros is2 iseq next_is2 ok next_value n1s veq next.
+ subst.
+ destruct is2.
+ 2:trivial.
+ clear z.
+ specialize (ok eq_refl). subst.
+ destruct n1s.
+ - refine (Zot' _ _ _ _ _ _ _ _).
+ all:shelve_unifiable.
+ reflexivity.
+ discriminate.
+ name_evars e.
+ case_eq next_value. intros next_valueU next_valueEU.
+ case_eq e. intros eU eEU.
+ f_equal.
+ unfold zotval.
+ unfold mp2a1s.
+ ring_simplify'.
+ replace 2 with (2*1) at 2 7 by omega.
+ rewrite <-?Z.mul_assoc.
+ rewrite <-?Z.mul_add_distr_l.
+ rewrite <-Z.mul_sub_distr_l.
+ rewrite Z.mul_cancel_l by omega.
+ replace 1 with (2-1) at 1 by omega.
+ rewrite Z.add_sub_assoc.
+ rewrite Z.sub_cancel_r.
+ Unshelve.
+ all:case_eq next.
+Abort.
+