diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2005-03-16 11:57:27 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2005-03-16 11:57:27 +0000 |
commit | 1caa545d5df15a0b7fc2d63d9660318fa7872032 (patch) | |
tree | 6ca79f25bbede241285a78d380c9384c2ad3e328 | |
parent | 9cb6bb1624719baa6d0d05f89bc8a537b4111b69 (diff) |
Nouvelle syntaxe 'with' des modules non gérée en v7
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6843 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r-- | test-suite/output/TranspModtype.out | 10 | ||||
-rw-r--r-- | test-suite/output/TranspModtype.v | 22 | ||||
-rw-r--r-- | test-suite/success/Mod_strengthen.v8 | 66 |
3 files changed, 66 insertions, 32 deletions
diff --git a/test-suite/output/TranspModtype.out b/test-suite/output/TranspModtype.out deleted file mode 100644 index 41e8648bc..000000000 --- a/test-suite/output/TranspModtype.out +++ /dev/null @@ -1,10 +0,0 @@ -TrM.A = M.A - : Set - -OpM.A = M.A - : Set - -TrM.B = M.B - : Set - -*** [ OpM.B : Set ] diff --git a/test-suite/output/TranspModtype.v b/test-suite/output/TranspModtype.v deleted file mode 100644 index 27b1fb9f9..000000000 --- a/test-suite/output/TranspModtype.v +++ /dev/null @@ -1,22 +0,0 @@ -Module Type SIG. - Axiom A:Set. - Axiom B:Set. -End SIG. - -Module M:SIG. - Definition A:=nat. - Definition B:=nat. -End M. - -Module N<:SIG:=M. - -Module TranspId[X:SIG] <: SIG with Definition A:=X.A := X. -Module OpaqueId[X:SIG] : SIG with Definition A:=X.A := X. - -Module TrM := TranspId M. -Module OpM := OpaqueId M. - -Print TrM.A. -Print OpM.A. -Print TrM.B. -Print OpM.B. diff --git a/test-suite/success/Mod_strengthen.v8 b/test-suite/success/Mod_strengthen.v8 new file mode 100644 index 000000000..3d9885e47 --- /dev/null +++ b/test-suite/success/Mod_strengthen.v8 @@ -0,0 +1,66 @@ +Module Type Sub. + Axiom Refl1 : forall x : nat, x = x. + Axiom Refl2 : forall x : nat, x = x. + Axiom Refl3 : forall x : nat, x = x. + Inductive T : Set := + A : T. +End Sub. + +Module Type Main. + Declare Module M: Sub. +End Main. + + +Module A <: Main. + Module M <: Sub. + Lemma Refl1 : forall x : nat, x = x. + intros; reflexivity. + Qed. + Axiom Refl2 : forall x : nat, x = x. + Lemma Refl3 : forall x : nat, x = x. + intros; reflexivity. + Defined. + Inductive T : Set := + A : T. + End M. +End A. + + + +(* first test *) + +Module F (S: Sub). + Module M := S. +End F. + +Module B <: Main with Module M:=A.M := F A.M. + + + +(* second test *) + +Lemma r1 : (A.M.Refl1 = B.M.Refl1). +Proof. + reflexivity. +Qed. + +Lemma r2 : (A.M.Refl2 = B.M.Refl2). +Proof. + reflexivity. +Qed. + +Lemma r3 : (A.M.Refl3 = B.M.Refl3). +Proof. + reflexivity. +Qed. + +Lemma t : (A.M.T = B.M.T). +Proof. + reflexivity. +Qed. + +Lemma a : (A.M.A = B.M.A). +Proof. + reflexivity. +Qed. + |