aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2005-03-16 11:57:27 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2005-03-16 11:57:27 +0000
commit1caa545d5df15a0b7fc2d63d9660318fa7872032 (patch)
tree6ca79f25bbede241285a78d380c9384c2ad3e328
parent9cb6bb1624719baa6d0d05f89bc8a537b4111b69 (diff)
Nouvelle syntaxe 'with' des modules non gérée en v7
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6843 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--test-suite/output/TranspModtype.out10
-rw-r--r--test-suite/output/TranspModtype.v22
-rw-r--r--test-suite/success/Mod_strengthen.v866
3 files changed, 66 insertions, 32 deletions
diff --git a/test-suite/output/TranspModtype.out b/test-suite/output/TranspModtype.out
deleted file mode 100644
index 41e8648bc..000000000
--- a/test-suite/output/TranspModtype.out
+++ /dev/null
@@ -1,10 +0,0 @@
-TrM.A = M.A
- : Set
-
-OpM.A = M.A
- : Set
-
-TrM.B = M.B
- : Set
-
-*** [ OpM.B : Set ]
diff --git a/test-suite/output/TranspModtype.v b/test-suite/output/TranspModtype.v
deleted file mode 100644
index 27b1fb9f9..000000000
--- a/test-suite/output/TranspModtype.v
+++ /dev/null
@@ -1,22 +0,0 @@
-Module Type SIG.
- Axiom A:Set.
- Axiom B:Set.
-End SIG.
-
-Module M:SIG.
- Definition A:=nat.
- Definition B:=nat.
-End M.
-
-Module N<:SIG:=M.
-
-Module TranspId[X:SIG] <: SIG with Definition A:=X.A := X.
-Module OpaqueId[X:SIG] : SIG with Definition A:=X.A := X.
-
-Module TrM := TranspId M.
-Module OpM := OpaqueId M.
-
-Print TrM.A.
-Print OpM.A.
-Print TrM.B.
-Print OpM.B.
diff --git a/test-suite/success/Mod_strengthen.v8 b/test-suite/success/Mod_strengthen.v8
new file mode 100644
index 000000000..3d9885e47
--- /dev/null
+++ b/test-suite/success/Mod_strengthen.v8
@@ -0,0 +1,66 @@
+Module Type Sub.
+ Axiom Refl1 : forall x : nat, x = x.
+ Axiom Refl2 : forall x : nat, x = x.
+ Axiom Refl3 : forall x : nat, x = x.
+ Inductive T : Set :=
+ A : T.
+End Sub.
+
+Module Type Main.
+ Declare Module M: Sub.
+End Main.
+
+
+Module A <: Main.
+ Module M <: Sub.
+ Lemma Refl1 : forall x : nat, x = x.
+ intros; reflexivity.
+ Qed.
+ Axiom Refl2 : forall x : nat, x = x.
+ Lemma Refl3 : forall x : nat, x = x.
+ intros; reflexivity.
+ Defined.
+ Inductive T : Set :=
+ A : T.
+ End M.
+End A.
+
+
+
+(* first test *)
+
+Module F (S: Sub).
+ Module M := S.
+End F.
+
+Module B <: Main with Module M:=A.M := F A.M.
+
+
+
+(* second test *)
+
+Lemma r1 : (A.M.Refl1 = B.M.Refl1).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma r2 : (A.M.Refl2 = B.M.Refl2).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma r3 : (A.M.Refl3 = B.M.Refl3).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma t : (A.M.T = B.M.T).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma a : (A.M.A = B.M.A).
+Proof.
+ reflexivity.
+Qed.
+