aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2018-04-05 10:59:45 +0200
committerGravatar Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr>2018-04-05 10:59:45 +0200
commit116a790f1a20cce16ba906ee9bf34b4681f69377 (patch)
treeac4b2f70fc9f1b092106d8e838b3c1048ac6af6b
parent4c3564ac7e2ea231a6dde84f2af6bfddbc0834c6 (diff)
parent42253af97391efff691f7966c25c9625593a9301 (diff)
Merge PR #7115: Sphinx doc chapter 28
-rw-r--r--Makefile.doc3
-rw-r--r--doc/refman/AsyncProofs.tex221
-rw-r--r--doc/refman/Reference-Manual.tex1
-rw-r--r--doc/sphinx/addendum/parallel-proof-processing.rst229
-rw-r--r--doc/sphinx/index.rst1
5 files changed, 231 insertions, 224 deletions
diff --git a/Makefile.doc b/Makefile.doc
index ecc68979e..0b45b9cec 100644
--- a/Makefile.doc
+++ b/Makefile.doc
@@ -65,8 +65,7 @@ REFMANCOQTEXFILES:=$(addprefix doc/refman/, \
REFMANTEXFILES:=$(addprefix doc/refman/, \
headers.sty Reference-Manual.tex \
- RefMan-uti.tex \
- AsyncProofs.tex) \
+ RefMan-uti.tex) \
$(REFMANCOQTEXFILES) \
REFMANEPSFILES:=doc/refman/coqide.eps doc/refman/coqide-queries.eps
diff --git a/doc/refman/AsyncProofs.tex b/doc/refman/AsyncProofs.tex
deleted file mode 100644
index 8f9d876cb..000000000
--- a/doc/refman/AsyncProofs.tex
+++ /dev/null
@@ -1,221 +0,0 @@
-\achapter{Asynchronous and Parallel Proof Processing\label{Asyncprocessing}}
-%HEVEA\cutname{async-proofs.html}
-\aauthor{Enrico Tassi}
-
-\label{pralitp}
-\index{Asynchronous and Parallel Proof Processing!presentation}
-
-This chapter explains how proofs can be asynchronously processed by Coq.
-This feature improves the reactivity of the system when used in interactive
-mode via CoqIDE. In addition, it allows Coq to take advantage of
-parallel hardware when used as a batch compiler by decoupling the checking
-of statements and definitions from the construction and checking of proofs
-objects.
-
-This feature is designed to help dealing with huge libraries of theorems
-characterized by long proofs. In the current state, it may not be beneficial
-on small sets of short files.
-
-This feature has some technical limitations that may make it unsuitable for
-some use cases.
-
-For example, in interactive mode, some errors coming from the kernel of Coq
-are signaled late. The type of errors belonging to this category
-are universe inconsistencies.
-
-At the time of writing, only opaque proofs (ending with \texttt{Qed} or \texttt{Admitted}) can be processed asynchronously.
-
-Finally, asynchronous processing is disabled when running CoqIDE in Windows. The
-current implementation of the feature is not stable on Windows. It can be
-enabled, as described below at \ref{interactivecaveats}, though doing so is not
-recommended.
-
-\section{Proof annotations}
-
-To process a proof asynchronously Coq needs to know the precise statement
-of the theorem without looking at the proof. This requires some annotations
-if the theorem is proved inside a \texttt{Section} (see Section~\ref{Section}).
-
-When a section ends, Coq looks at the proof object to decide which
-section variables are actually used and hence have to be quantified in the
-statement of the theorem. To avoid making the construction of proofs
-mandatory when ending a section, one can start each proof with the
-\texttt{Proof using} command (Section~\ref{ProofUsing}) that declares which
-section variables the theorem uses.
-
-The presence of \texttt{Proof using} is needed to process proofs
-asynchronously in interactive mode.
-
-It is not strictly mandatory in batch mode if it is not the first time
-the file is compiled and if the file itself did not change. When the
-proof does not begin with \texttt{Proof using}, the system records in an
-auxiliary file, produced along with the \texttt{.vo} file, the list of
-section variables used.
-
-\subsubsection{Automatic suggestion of proof annotations}
-
-The command \texttt{Set Suggest Proof Using} makes Coq suggest, when a
-\texttt{Qed} command is processed, a correct proof annotation. It is up
-to the user to modify the proof script accordingly.
-
-\section{Proof blocks and error resilience}
-
-Coq 8.6 introduces a mechanism for error resiliency: in interactive mode Coq
-is able to completely check a document containing errors instead of bailing
-out at the first failure.
-
-Two kind of errors are supported: errors occurring in vernacular commands and
-errors occurring in proofs.
-
-To properly recover from a failing tactic, Coq needs to recognize the structure of
-the proof in order to confine the error to a sub proof. Proof block detection
-is performed by looking at the syntax of the proof script (i.e. also looking at indentation).
-Coq comes with four kind of proof blocks, and an ML API to add new ones.
-
-\begin{description}
-\item[curly] blocks are delimited by \texttt{\{} and \texttt{\}}, see \ref{Proof-handling}
-\item[par] blocks are atomic, i.e. just one tactic introduced by the \texttt{par:} goal selector
-\item[indent] blocks end with a tactic indented less than the previous one
-\item[bullet] blocks are delimited by two equal bullet signs at the same indentation level
-\end{description}
-
-\subsection{Caveats}
-
-When a vernacular command fails the subsequent error messages may be bogus, i.e. caused by
-the first error. Error resiliency for vernacular commands can be switched off passing
-\texttt{-async-proofs-command-error-resilience off} to CoqIDE.
-
-An incorrect proof block detection can result into an incorrect error recovery and
-hence in bogus errors. Proof block detection cannot be precise for bullets or
-any other non well parenthesized proof structure. Error resiliency can be
-turned off or selectively activated for any set of block kind passing to
-CoqIDE one of the following options:
-\texttt{-async-proofs-tactic-error-resilience off},
-\texttt{-async-proofs-tactic-error-resilience all},
-\texttt{-async-proofs-tactic-error-resilience $blocktype_1$,..., $blocktype_n$}.
-Valid proof block types are: ``curly'', ``par'', ``indent'', ``bullet''.
-
-\section{Interactive mode}
-
-At the time of writing the only user interface supporting asynchronous proof
-processing is CoqIDE.
-
-When CoqIDE is started, two Coq processes are created. The master one follows
-the user, giving feedback as soon as possible by skipping proofs, which are
-delegated to the worker process. The worker process, whose state can be seen
-by clicking on the button in the lower right corner of the main CoqIDE window,
-asynchronously processes the proofs. If a proof contains an error, it is
-reported in red in the label of the very same button, that can also be used to
-see the list of errors and jump to the corresponding line.
-
-If a proof is processed asynchronously the corresponding \texttt{Qed} command
-is colored using a lighter color that usual. This signals that
-the proof has been delegated to a worker process (or will be processed
-lazily if the \texttt{-async-proofs lazy} option is used). Once finished, the
-worker process will provide the proof object, but this will not be
-automatically checked by the kernel of the main process. To force
-the kernel to check all the proof objects, one has to click the button
-with the gears. Only then are all the universe constraints checked.
-
-\subsubsection{Caveats}
-\label{interactivecaveats}
-
-The number of worker processes can be increased by passing CoqIDE the
-\texttt{-async-proofs-j $n$} flag. Note that the memory consumption
-increases too, since each worker requires the same amount of memory as
-the master process. Also note that increasing the number of workers may
-reduce the reactivity of the master process to user commands.
-
-To disable this feature, one can pass the \texttt{-async-proofs off} flag to
-CoqIDE. Conversely, on Windows, where the feature is disabled by default,
-pass the \texttt{-async-proofs on} flag to enable it.
-
-Proofs that are known to take little time to process are not delegated to a
-worker process. The threshold can be configure with \texttt{-async-proofs-delegation-threshold}. Default is 0.03 seconds.
-
-\section{Batch mode}
-
-When Coq is used as a batch compiler by running \texttt{coqc} or
-\texttt{coqtop -compile}, it produces a \texttt{.vo} file for each
-\texttt{.v} file. A \texttt{.vo} file contains, among other things,
-theorems statements and proofs. Hence to produce a \texttt{.vo} Coq need
-to process all the proofs of the \texttt{.v} file.
-
-The asynchronous processing of proofs can decouple the generation of a
-compiled file (like the \texttt{.vo} one) that can be loaded by
-\texttt{Require} from the generation and checking of the proof objects.
-The \texttt{-quick} flag can be passed to \texttt{coqc} or
-\texttt{coqtop} to produce, quickly, \texttt{.vio} files. Alternatively,
-when using a \texttt{Makefile} produced by \texttt{coq\_makefile}, the
-\texttt{quick} target can be used to compile all files using the
-\texttt{-quick} flag.
-
-A \texttt{.vio} file can be loaded using \texttt{Require} exactly as a
-\texttt{.vo} file but proofs will not be available (the \texttt{Print}
-command produces an error). Moreover, some universe constraints might be
-missing, so universes inconsistencies might go unnoticed. A
-\texttt{.vio} file does not contain proof objects, but proof tasks,
-i.e. what a worker process can transform into a proof object.
-
-Compiling a set of files with the \texttt{-quick} flag allows one to work,
-interactively, on any file without waiting for all the proofs to be checked.
-
-When working interactively, one can fully check all the \texttt{.v} files by
-running \texttt{coqc} as usual.
-
-Alternatively one can turn each \texttt{.vio} into the corresponding
-\texttt{.vo}. All \texttt{.vio} files can be processed in parallel,
-hence this alternative might be faster. The command \texttt{coqtop
- -schedule-vio2vo 2 a b c} can be used to obtain a good scheduling for 2
-workers to produce \texttt{a.vo}, \texttt{b.vo}, and \texttt{c.vo}. When
-using a \texttt{Makefile} produced by \texttt{coq\_makefile}, the
-\texttt{vio2vo} target can be used for that purpose. Variable \texttt{J}
-should be set to the number of workers, e.g. \texttt{make vio2vo J=2}.
-The only caveat is that, while the \texttt{.vo} files obtained from
-\texttt{.vio} files are complete (they contain all proof terms and
-universe constraints), the satisfiability of all universe constraints has
-not been checked globally (they are checked to be consistent for every
-single proof). Constraints will be checked when these \texttt{.vo} files
-are (recursively) loaded with \texttt{Require}.
-
-There is an extra, possibly even faster, alternative: just check the
-proof tasks stored in \texttt{.vio} files without producing the
-\texttt{.vo} files. This is possibly faster because all the proof tasks
-are independent, hence one can further partition the job to be done
-between workers. The \texttt{coqtop -schedule-vio-checking 6 a b c}
-command can be used to obtain a good scheduling for 6 workers to check
-all the proof tasks of \texttt{a.vio}, \texttt{b.vio}, and
-\texttt{c.vio}. Auxiliary files are used to predict how long a proof task
-will take, assuming it will take the same amount of time it took last
-time. When using a \texttt{Makefile} produced by \texttt{coq\_makefile},
-the \texttt{checkproofs} target can be used to check all \texttt{.vio}
-files. Variable \texttt{J} should be set to the number of workers,
-e.g. \texttt{make checkproofs J=6}. As when converting \texttt{.vio}
-files to \texttt{.vo} files, universe constraints are not checked to be
-globally consistent. Hence this compilation mode is only useful for quick
-regression testing and on developments not making heavy use of the $Type$
-hierarchy.
-
-\section{Limiting the number of parallel workers}
-\label{coqworkmgr}
-
-Many Coq processes may run on the same computer, and each of them may start
-many additional worker processes.
-The \texttt{coqworkmgr} utility lets one limit the number of workers, globally.
-
-The utility accepts the \texttt{-j} argument to specify the maximum number of
-workers (defaults to 2). \texttt{coqworkmgr} automatically starts in the
-background and prints an environment variable assignment like
-\texttt{COQWORKMGR\_SOCKET=localhost:45634}. The user must set this variable in
-all the shells from which Coq processes will be started. If one uses just
-one terminal running the bash shell, then \texttt{export `coqworkmgr -j 4`} will
-do the job.
-
-After that, all Coq processes, e.g. \texttt{coqide} and \texttt{coqc},
-will honor the limit, globally.
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex
index cfb3c625b..7e68dd752 100644
--- a/doc/refman/Reference-Manual.tex
+++ b/doc/refman/Reference-Manual.tex
@@ -117,7 +117,6 @@ Options A and B of the licence are {\em not} elected.}
%END LATEX
\part{Addendum to the Reference Manual}
\include{AddRefMan-pre}%
-\include{AsyncProofs}% Paral-ITP
\include{Universes.v}% Universe polymorphes
\include{Misc.v}
%BEGIN LATEX
diff --git a/doc/sphinx/addendum/parallel-proof-processing.rst b/doc/sphinx/addendum/parallel-proof-processing.rst
new file mode 100644
index 000000000..8c1b9d152
--- /dev/null
+++ b/doc/sphinx/addendum/parallel-proof-processing.rst
@@ -0,0 +1,229 @@
+.. include:: ../replaces.rst
+
+.. _asynchronousandparallelproofprocessing:
+
+Asynchronous and Parallel Proof Processing
+==========================================
+
+:Author: Enrico Tassi
+
+This chapter explains how proofs can be asynchronously processed by
+|Coq|. This feature improves the reactivity of the system when used in
+interactive mode via |CoqIDE|. In addition, it allows |Coq| to take
+advantage of parallel hardware when used as a batch compiler by
+decoupling the checking of statements and definitions from the
+construction and checking of proofs objects.
+
+This feature is designed to help dealing with huge libraries of
+theorems characterized by long proofs. In the current state, it may
+not be beneficial on small sets of short files.
+
+This feature has some technical limitations that may make it
+unsuitable for some use cases.
+
+For example, in interactive mode, some errors coming from the kernel
+of |Coq| are signaled late. The type of errors belonging to this
+category are universe inconsistencies.
+
+At the time of writing, only opaque proofs (ending with ``Qed`` or
+``Admitted``) can be processed asynchronously.
+
+Finally, asynchronous processing is disabled when running |CoqIDE| in
+Windows. The current implementation of the feature is not stable on
+Windows. It can be enabled, as described below at :ref:`interactive-mode`,
+though doing so is not recommended.
+
+Proof annotations
+----------------------
+
+To process a proof asynchronously |Coq| needs to know the precise
+statement of the theorem without looking at the proof. This requires
+some annotations if the theorem is proved inside a Section (see
+Section :ref:`TODO-2.4`).
+
+When a section ends, |Coq| looks at the proof object to decide which
+section variables are actually used and hence have to be quantified in
+the statement of the theorem. To avoid making the construction of
+proofs mandatory when ending a section, one can start each proof with
+the ``Proof using`` command (Section :ref:`TODO-7.1.5`) that declares which section
+variables the theorem uses.
+
+The presence of ``Proof`` using is needed to process proofs asynchronously
+in interactive mode.
+
+It is not strictly mandatory in batch mode if it is not the first time
+the file is compiled and if the file itself did not change. When the
+proof does not begin with Proof using, the system records in an
+auxiliary file, produced along with the `.vo` file, the list of section
+variables used.
+
+Automatic suggestion of proof annotations
+`````````````````````````````````````````
+
+The command ``Set Suggest Proof Using`` makes |Coq| suggest, when a ``Qed``
+command is processed, a correct proof annotation. It is up to the user
+to modify the proof script accordingly.
+
+
+Proof blocks and error resilience
+--------------------------------------
+
+|Coq| 8.6 introduced a mechanism for error resiliency: in interactive
+mode |Coq| is able to completely check a document containing errors
+instead of bailing out at the first failure.
+
+Two kind of errors are supported: errors occurring in vernacular
+commands and errors occurring in proofs.
+
+To properly recover from a failing tactic, |Coq| needs to recognize the
+structure of the proof in order to confine the error to a sub proof.
+Proof block detection is performed by looking at the syntax of the
+proof script (i.e. also looking at indentation). |Coq| comes with four
+kind of proof blocks, and an ML API to add new ones.
+
+:curly: blocks are delimited by { and }, see Chapter :ref:`proofhandling`
+:par: blocks are atomic, i.e. just one tactic introduced by the `par:`
+ goal selector
+:indent: blocks end with a tactic indented less than the previous one
+:bullet: blocks are delimited by two equal bullet signs at the same
+ indentation level
+
+Caveats
+````````
+
+When a vernacular command fails the subsequent error messages may be
+bogus, i.e. caused by the first error. Error resiliency for vernacular
+commands can be switched off by passing ``-async-proofs-command-error-resilience off``
+to |CoqIDE|.
+
+An incorrect proof block detection can result into an incorrect error
+recovery and hence in bogus errors. Proof block detection cannot be
+precise for bullets or any other non well parenthesized proof
+structure. Error resiliency can be turned off or selectively activated
+for any set of block kind passing to |CoqIDE| one of the following
+options:
+
+- ``-async-proofs-tactic-error-resilience off``
+- ``-async-proofs-tactic-error-resilience all``
+- ``-async-proofs-tactic-error-resilience`` :n:`{*, blocktype}`
+
+Valid proof block types are: “curly”, “par”, “indent”, and “bullet”.
+
+.. _interactive-mode:
+
+Interactive mode
+---------------------
+
+At the time of writing the only user interface supporting asynchronous
+proof processing is |CoqIDE|.
+
+When |CoqIDE| is started, two |Coq| processes are created. The master one
+follows the user, giving feedback as soon as possible by skipping
+proofs, which are delegated to the worker process. The worker process,
+whose state can be seen by clicking on the button in the lower right
+corner of the main |CoqIDE| window, asynchronously processes the proofs.
+If a proof contains an error, it is reported in red in the label of
+the very same button, that can also be used to see the list of errors
+and jump to the corresponding line.
+
+If a proof is processed asynchronously the corresponding Qed command
+is colored using a lighter color that usual. This signals that the
+proof has been delegated to a worker process (or will be processed
+lazily if the ``-async-proofs lazy`` option is used). Once finished, the
+worker process will provide the proof object, but this will not be
+automatically checked by the kernel of the main process. To force the
+kernel to check all the proof objects, one has to click the button
+with the gears. Only then are all the universe constraints checked.
+
+Caveats
+```````
+
+The number of worker processes can be increased by passing |CoqIDE|
+the ``-async-proofs-j n`` flag. Note that the memory consumption increases too,
+since each worker requires the same amount of memory as the master
+process. Also note that increasing the number of workers may reduce
+the reactivity of the master process to user commands.
+
+To disable this feature, one can pass the ``-async-proofs off`` flag to
+|CoqIDE|. Conversely, on Windows, where the feature is disabled by
+default, pass the ``-async-proofs on`` flag to enable it.
+
+Proofs that are known to take little time to process are not delegated
+to a worker process. The threshold can be configure with
+``-async-proofs-delegation-threshold``. Default is 0.03 seconds.
+
+Batch mode
+---------------
+
+When |Coq| is used as a batch compiler by running `coqc` or `coqtop`
+-compile, it produces a `.vo` file for each `.v` file. A `.vo` file contains,
+among other things, theorems statements and proofs. Hence to produce a
+.vo |Coq| need to process all the proofs of the `.v` file.
+
+The asynchronous processing of proofs can decouple the generation of a
+compiled file (like the `.vo` one) that can be loaded by ``Require`` from the
+generation and checking of the proof objects. The ``-quick`` flag can be
+passed to `coqc` or `coqtop` to produce, quickly, `.vio` files.
+Alternatively, when using a Makefile produced by `coq_makefile`,
+the ``quick`` target can be used to compile all files using the ``-quick`` flag.
+
+A `.vio` file can be loaded using ``Require`` exactly as a `.vo` file but
+proofs will not be available (the Print command produces an error).
+Moreover, some universe constraints might be missing, so universes
+inconsistencies might go unnoticed. A `.vio` file does not contain proof
+objects, but proof tasks, i.e. what a worker process can transform
+into a proof object.
+
+Compiling a set of files with the ``-quick`` flag allows one to work,
+interactively, on any file without waiting for all the proofs to be
+checked.
+
+When working interactively, one can fully check all the `.v` files by
+running `coqc` as usual.
+
+Alternatively one can turn each `.vio` into the corresponding `.vo`. All
+.vio files can be processed in parallel, hence this alternative might
+be faster. The command ``coqtop -schedule-vio2vo 2 a b c`` can be used to
+obtain a good scheduling for two workers to produce `a.vo`, `b.vo`, and
+`c.vo`. When using a Makefile produced by `coq_makefile`, the ``vio2vo`` target
+can be used for that purpose. Variable `J` should be set to the number
+of workers, e.g. ``make vio2vo J=2``. The only caveat is that, while the
+.vo files obtained from `.vio` files are complete (they contain all proof
+terms and universe constraints), the satisfiability of all universe
+constraints has not been checked globally (they are checked to be
+consistent for every single proof). Constraints will be checked when
+these `.vo` files are (recursively) loaded with ``Require``.
+
+There is an extra, possibly even faster, alternative: just check the
+proof tasks stored in `.vio` files without producing the `.vo` files. This
+is possibly faster because all the proof tasks are independent, hence
+one can further partition the job to be done between workers. The
+``coqtop -schedule-vio-checking 6 a b c`` command can be used to obtain a
+good scheduling for 6 workers to check all the proof tasks of `a.vio`,
+`b.vio`, and `c.vio`. Auxiliary files are used to predict how long a proof
+task will take, assuming it will take the same amount of time it took
+last time. When using a Makefile produced by coq_makefile, the
+``checkproofs`` target can be used to check all `.vio` files. Variable `J`
+should be set to the number of workers, e.g. ``make checkproofs J=6``. As
+when converting `.vio` files to `.vo` files, universe constraints are not
+checked to be globally consistent. Hence this compilation mode is only
+useful for quick regression testing and on developments not making
+heavy use of the `Type` hierarchy.
+
+Limiting the number of parallel workers
+--------------------------------------------
+
+Many |Coq| processes may run on the same computer, and each of them may
+start many additional worker processes. The `coqworkmgr` utility lets
+one limit the number of workers, globally.
+
+The utility accepts the ``-j`` argument to specify the maximum number of
+workers (defaults to 2). `coqworkmgr` automatically starts in the
+background and prints an environment variable assignment
+like ``COQWORKMGR_SOCKET=localhost:45634``. The user must set this variable
+in all the shells from which |Coq| processes will be started. If one
+uses just one terminal running the bash shell, then
+``export ‘coqworkmgr -j 4‘`` will do the job.
+
+After that, all |Coq| processes, e.g. `coqide` and `coqc`, will honor the
+limit, globally.
diff --git a/doc/sphinx/index.rst b/doc/sphinx/index.rst
index 75e955136..3dd4f8020 100644
--- a/doc/sphinx/index.rst
+++ b/doc/sphinx/index.rst
@@ -54,6 +54,7 @@ Table of contents
addendum/ring
addendum/nsatz
addendum/generalized-rewriting
+ addendum/parallel-proof-processing
.. toctree::
:caption: Reference