aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2017-05-09 18:13:57 +0200
committerGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2017-05-22 15:15:49 +0200
commit0fe4d837191de481184cc995558ca3774253be0c (patch)
treea7d7af84f4996a6c06e75cff20bae5772b45886f
parente25e1af79838103634ee445fdb38d53c19587365 (diff)
refl_omega: more refactoring (e.g. IntSets instead of sorted lists)
-rw-r--r--plugins/romega/refl_omega.ml259
1 files changed, 136 insertions, 123 deletions
diff --git a/plugins/romega/refl_omega.ml b/plugins/romega/refl_omega.ml
index b3135a164..bb4ab37ff 100644
--- a/plugins/romega/refl_omega.ml
+++ b/plugins/romega/refl_omega.ml
@@ -14,6 +14,8 @@ module OmegaSolver = Omega_plugin.Omega.MakeOmegaSolver (Bigint)
open OmegaSolver
module Id = Names.Id
+module IntSet = Int.Set
+module IntHtbl = Hashtbl.Make(Int)
(* \section{Useful functions and flags} *)
(* Especially useful debugging functions *)
@@ -40,10 +42,6 @@ type direction = Left of int | Right of int
type occ_step = O_left | O_right | O_mono
type occ_path = occ_step list
-let occ_step_eq s1 s2 = match s1, s2 with
-| O_left, O_left | O_right, O_right | O_mono, O_mono -> true
-| _ -> false
-
(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
d'une liste de pas à partir de la racine de l'hypothèse *)
type occurrence = {o_hyp : Id.t; o_path : occ_path}
@@ -110,19 +108,19 @@ type environment = {
mutable om_vars : (oformula * int) list;
(* Traduction des indices utilisés ici en les indices finaux utilisés par
* la tactique Omega après dénombrement des variables utiles *)
- real_indices : (int,int) Hashtbl.t;
+ real_indices : int IntHtbl.t;
mutable cnt_connectors : int;
- equations : (int,oequation) Hashtbl.t;
- constructors : (int, occurrence) Hashtbl.t
+ equations : oequation IntHtbl.t;
+ constructors : occurrence IntHtbl.t
}
(* \subsection{Solution tree}
Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
d'un ensemble d'équation dont dépend la solution et d'une trace *)
-(* La liste des dépendances est triée et sans redondance *)
+
type solution = {
s_index : int;
- s_equa_deps : int list;
+ s_equa_deps : IntSet.t;
s_trace : action list }
(* Arbre de solution résolvant complètement un ensemble de systèmes *)
@@ -141,6 +139,26 @@ type context_content =
CCHyp of occurrence
| CCEqua of int
+(** Some dedicated equality tests *)
+
+let occ_step_eq s1 s2 = match s1, s2 with
+| O_left, O_left | O_right, O_right | O_mono, O_mono -> true
+| _ -> false
+
+let rec oform_eq f f' = match f,f' with
+ | Oint i, Oint i' -> Bigint.equal i i'
+ | Oplus (f1,f2), Oplus (f1',f2')
+ | Omult (f1,f2), Omult (f1',f2')
+ | Ominus (f1,f2), Ominus (f1',f2') -> oform_eq f1 f1' && oform_eq f2 f2'
+ | Oopp f, Oopp f' -> oform_eq f f'
+ | Oatom a, Oatom a' -> Int.equal a a'
+ | Oufo f, Oufo f' -> oform_eq f f'
+ | _ -> false
+
+let dir_eq d d' = match d, d' with
+ | Left i, Left i' | Right i, Right i' -> Int.equal i i'
+ | _ -> false
+
(* \section{Specific utility functions to handle base types} *)
(* Nom arbitraire de l'hypothèse codant la négation du but final *)
let id_concl = Id.of_string "__goal__"
@@ -148,9 +166,9 @@ let id_concl = Id.of_string "__goal__"
(* Initialisation de l'environnement de réification de la tactique *)
let new_environment () = {
terms = []; props = []; om_vars = []; cnt_connectors = 0;
- real_indices = Hashtbl.create 7;
- equations = Hashtbl.create 7;
- constructors = Hashtbl.create 7;
+ real_indices = IntHtbl.create 7;
+ equations = IntHtbl.create 7;
+ constructors = IntHtbl.create 7;
}
(* Génération d'un nom d'équation *)
@@ -200,11 +218,10 @@ let display_omega_var i = Printf.sprintf "OV%d" i
le terme d'un monome (le plus souvent un atome) *)
let intern_omega env t =
- begin try List.assoc_f Pervasives.(=) t env.om_vars (* FIXME *)
+ try List.assoc_f oform_eq t env.om_vars
with Not_found ->
let v = new_omega_var () in
env.om_vars <- (t,v) :: env.om_vars; v
- end
(* Ajout forcé d'un lien entre un terme et une variable Cas où la
variable est créée par Omega et où il faut la lier après coup à un atome
@@ -214,8 +231,8 @@ let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
(* Récupère le terme associé à une variable *)
let unintern_omega env id =
let rec loop = function
- [] -> failwith "unintern"
- | ((t,j)::l) -> if Int.equal id j then t else loop l in
+ | [] -> failwith "unintern"
+ | ((t,j)::l) -> if Int.equal id j then t else loop l in
loop env.om_vars
(* \subsection{Gestion des environnements de variable pour la réflexion}
@@ -248,12 +265,11 @@ let get_prop v env =
(* Ajout d'une equation dans l'environnement de reification *)
let add_equation env e =
let id = e.e_omega.id in
- try let _ = Hashtbl.find env.equations id in ()
- with Not_found -> Hashtbl.add env.equations id e
+ if IntHtbl.mem env.equations id then () else IntHtbl.add env.equations id e
(* accès a une equation *)
let get_equation env id =
- try Hashtbl.find env.equations id
+ try IntHtbl.find env.equations id
with Not_found as e ->
Printf.printf "Omega Equation %d non trouvée\n" id; raise e
@@ -337,10 +353,10 @@ let coq_of_formula env t =
(* \subsection{Oformula vers COQ reifié} *)
let reified_of_atom env i =
- try Hashtbl.find env.real_indices i
+ try IntHtbl.find env.real_indices i
with Not_found ->
Printf.printf "Atome %d non trouvé\n" i;
- Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
+ IntHtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
raise Not_found
let rec reified_of_formula env = function
@@ -417,19 +433,19 @@ pour faire des opérations de normalisation sur les équations. *)
(* Extraction des variables d'une équation. *)
(* Chaque fonction retourne une liste triée sans redondance *)
-let (@@) = List.merge_uniq compare
+let (@@) = IntSet.union
let rec vars_of_formula = function
- | Oint _ -> []
+ | Oint _ -> IntSet.empty
| Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
| Oopp e -> vars_of_formula e
- | Oatom i -> [i]
- | Oufo _ -> []
+ | Oatom i -> IntSet.singleton i
+ | Oufo _ -> IntSet.empty
let rec vars_of_equations = function
- | [] -> []
+ | [] -> IntSet.empty
| e::l ->
(vars_of_formula e.e_left) @@
(vars_of_formula e.e_right) @@
@@ -441,7 +457,7 @@ let rec vars_of_prop = function
| Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
| Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
| Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pprop _ | Ptrue | Pfalse -> []
+ | Pprop _ | Ptrue | Pfalse -> IntSet.empty
(* \subsection{Multiplication par un scalaire} *)
@@ -694,7 +710,7 @@ and binprop env (neg2,depends,origin,path)
let depends1 = if add_to_depends then Left i::depends else depends in
let depends2 = if add_to_depends then Right i::depends else depends in
if add_to_depends then
- Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
+ IntHtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
let t1' =
oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
let t2' =
@@ -754,14 +770,14 @@ let reify_gl env gl =
let hyps = Tacmach.New.pf_hyps_types gl in
let hyps = List.map (fun (i,t) -> (i,EConstr.Unsafe.to_constr t)) hyps in
let t_concl =
- Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in
+ oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl in
let t_lhyps =
List.map
(fun (i,t) -> i,oproposition_of_constr env (false,[],i,[]) gl t)
hyps
in
let () = if !debug then display_gl env t_concl t_lhyps in
- (id_concl,t_concl) :: t_lhyps
+ t_concl, t_lhyps
let rec destruct_pos_hyp eqns = function
| Pequa (_,e) -> [e :: eqns]
@@ -841,38 +857,35 @@ let display_systems syst_list =
calcul des hypothèses *)
let rec hyps_used_in_trace = function
+ | [] -> IntSet.empty
| act :: l ->
- begin match act with
- | HYP e -> [e.id] @@ (hyps_used_in_trace l)
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- hyps_used_in_trace act1 @@ hyps_used_in_trace act2
- | _ -> hyps_used_in_trace l
- end
- | [] -> []
+ match act with
+ | HYP e -> IntSet.add e.id (hyps_used_in_trace l)
+ | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ hyps_used_in_trace act1 @@ hyps_used_in_trace act2
+ | _ -> hyps_used_in_trace l
(* Extraction des variables déclarées dans une équation. Permet ensuite
de les déclarer dans l'environnement de la procédure réflexive et
éviter les créations de variable au vol *)
let rec variable_stated_in_trace = function
- | act :: l ->
- begin match act with
- | STATE action ->
- (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
- (*i coef: int, var:int i*)
- action :: variable_stated_in_trace l
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- variable_stated_in_trace act1 @ variable_stated_in_trace act2
- | _ -> variable_stated_in_trace l
- end
| [] -> []
-;;
+ | act :: l ->
+ match act with
+ | STATE action ->
+ (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
+ (*i coef: int, var:int i*)
+ action :: variable_stated_in_trace l
+ | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ variable_stated_in_trace act1 @ variable_stated_in_trace act2
+ | _ -> variable_stated_in_trace l
let add_stated_equations env tree =
(* Il faut trier les variables par ordre d'introduction pour ne pas risquer
de définir dans le mauvais ordre *)
let stated_equations =
- let cmpvar x y = Pervasives.(-) x.st_var y.st_var in
+ let cmpvar x y = Int.compare x.st_var y.st_var in
let rec loop = function
| Tree(_,t1,t2) -> List.merge cmpvar (loop t1) (loop t2)
| Leaf s -> List.sort cmpvar (variable_stated_in_trace s.s_trace)
@@ -904,22 +917,22 @@ let add_stated_equations env tree =
arg, then second arg), unless you know what you're doing. *)
let rec get_eclatement env = function
- i :: r ->
- let l = try (get_equation env i).e_depends with Not_found -> [] in
- List.union Pervasives.(=) (List.rev l) (get_eclatement env r)
| [] -> []
+ | i :: r ->
+ let l = try (get_equation env i).e_depends with Not_found -> [] in
+ List.union dir_eq (List.rev l) (get_eclatement env r)
let select_smaller l =
- let comp (_,x) (_,y) = Pervasives.(-) (List.length x) (List.length y) in
+ let comp (_,x) (_,y) = Int.compare (List.length x) (List.length y) in
try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
let filter_compatible_systems required systems =
let rec select = function
- (x::l) ->
- if List.mem x required then select l
- else if List.mem (barre x) required then raise Exit
- else x :: select l
| [] -> []
+ | (x::l) ->
+ if List.mem_f dir_eq x required then select l
+ else if List.mem_f dir_eq (barre x) required then raise Exit
+ else x :: select l
in
List.map_filter
(function (sol, splits) ->
@@ -935,46 +948,45 @@ let rec equas_of_solution_tree = function
to be undecidable in ReflOmegaCore.concl_to_hyp, whereas for instance
Pfalse is decidable. So should not be used on conclusion (??) *)
-let really_useful_prop l_equa c =
- let rec real_of = function
- Pequa(t,_) -> t
- | Ptrue -> app coq_True [||]
- | Pfalse -> app coq_False [||]
- | Pnot t1 -> app coq_not [|real_of t1|]
- | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|]
- | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|]
- (* Attention : implications sur le lifting des variables à comprendre ! *)
- | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2)
- | Pprop t -> t in
- let rec loop c =
- match c with
- Pequa(_,e) ->
- if List.mem e.e_omega.id l_equa then Some c else None
- | Ptrue -> None
- | Pfalse -> None
+let rec coq_of_oprop = function
+ | Pequa(t,_) -> t
+ | Ptrue -> app coq_True [||]
+ | Pfalse -> app coq_False [||]
+ | Pnot t1 -> app coq_not [|coq_of_oprop t1|]
+ | Por(_,t1,t2) -> app coq_or [|coq_of_oprop t1; coq_of_oprop t2|]
+ | Pand(_,t1,t2) -> app coq_and [|coq_of_oprop t1; coq_of_oprop t2|]
+ (* Attention : implications sur le lifting des variables à comprendre ! *)
+ | Pimp(_,t1,t2) -> Term.mkArrow (coq_of_oprop t1) (coq_of_oprop t2)
+ | Pprop t -> t
+
+let really_useful_prop equas c =
+ let rec loop c = match c with
+ | Pequa(_,e) -> if IntSet.mem e.e_omega.id equas then Some c else None
| Pnot t1 ->
- begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
+ begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
| Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
| Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
| Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
- | Pprop t -> None
+ | Ptrue | Pfalse | Pprop _ -> None
and binop f t1 t2 =
begin match loop t1, loop t2 with
None, None -> None
| Some t1',Some t2' -> Some (f(t1',t2'))
- | Some t1',None -> Some (f(t1',Pprop (real_of t2)))
- | None,Some t2' -> Some (f(Pprop (real_of t1),t2'))
- end in
+ | Some t1',None -> Some (f(t1',Pprop (coq_of_oprop t2)))
+ | None,Some t2' -> Some (f(Pprop (coq_of_oprop t1),t2'))
+ end
+ in
match loop c with
- None -> Pprop (real_of c)
+ | None -> Pprop (coq_of_oprop c)
| Some t -> t
let rec display_solution_tree ch = function
Leaf t ->
output_string ch
(Printf.sprintf "%d[%s]"
- t.s_index
- (String.concat " " (List.map string_of_int t.s_equa_deps)))
+ t.s_index
+ (String.concat " " (List.map string_of_int
+ (IntSet.elements t.s_equa_deps))))
| Tree(i,t1,t2) ->
Printf.fprintf ch "S%d(%a,%a)" i
display_solution_tree t1 display_solution_tree t2
@@ -1024,8 +1036,11 @@ let mk_direction_list l =
(* \section{Rejouer l'historique} *)
let get_hyp env_hyp i =
- try List.index0 Pervasives.(=) (CCEqua i) env_hyp
- with Not_found -> failwith (Printf.sprintf "get_hyp %d" i)
+ let rec loop count = function
+ | [] -> failwith (Printf.sprintf "get_hyp %d" i)
+ | CCEqua i' :: _ when Int.equal i i' -> count
+ | _ :: l -> loop (succ count) l
+ in loop 0 env_hyp
let replay_history env env_hyp =
let rec loop env_hyp t =
@@ -1120,7 +1135,7 @@ let replay_history env env_hyp =
let rec decompose_tree env ctxt = function
Tree(i,left,right) ->
let org =
- try Hashtbl.find env.constructors i
+ try IntHtbl.find env.constructors i
with Not_found ->
failwith (Printf.sprintf "Cannot find constructor %d" i) in
let (index,path) = find_path org ctxt in
@@ -1132,12 +1147,12 @@ let rec decompose_tree env ctxt = function
decompose_tree env (left_hyp::ctxt) left;
decompose_tree env (right_hyp::ctxt) right |]
| Leaf s ->
- decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps
+ decompose_tree_hyps s.s_trace env ctxt (IntSet.elements s.s_equa_deps)
and decompose_tree_hyps trace env ctxt = function
[] -> app coq_e_solve [| replay_history env ctxt trace |]
| (i::l) ->
let equation =
- try Hashtbl.find env.equations i
+ try IntHtbl.find env.equations i
with Not_found ->
failwith (Printf.sprintf "Cannot find equation %d" i) in
let (index,path) = find_path equation.e_origin ctxt in
@@ -1157,7 +1172,7 @@ l'extraction d'un ensemble minimal de solutions permettant la
résolution globale du système et enfin construit la trace qui permet
de faire rejouer cette solution par la tactique réflexive. *)
-let resolution env full_reified_goal systems_list =
+let resolution env (reified_concl,reified_hyps) systems_list =
let num = ref 0 in
let solve_system list_eq =
let index = !num in
@@ -1166,14 +1181,14 @@ let resolution env full_reified_goal systems_list =
simplify_strong
(new_omega_eq,new_omega_var,display_omega_var)
system in
- (* calcule les hypotheses utilisées pour la solution *)
+ (* Hypotheses used for this solution *)
let vars = hyps_used_in_trace trace in
- let splits = get_eclatement env vars in
+ let splits = get_eclatement env (IntSet.elements vars) in
if !debug then begin
Printf.printf "SYSTEME %d\n" index;
display_action display_omega_var trace;
print_string "\n Depend :";
- List.iter (fun i -> Printf.printf " %d" i) vars;
+ IntSet.iter (fun i -> Printf.printf " %d" i) vars;
print_string "\n Split points :";
List.iter display_depend splits;
Printf.printf "\n------------------------------------\n"
@@ -1187,23 +1202,21 @@ let resolution env full_reified_goal systems_list =
display_solution_tree stdout solution_tree;
print_newline()
end;
- (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *)
- let useful_equa_id = equas_of_solution_tree solution_tree in
- (* recupere explicitement ces equations *)
- let equations = List.map (get_equation env) useful_equa_id in
- let l_hyps' = List.uniquize (List.map (fun e -> e.e_origin.o_hyp) equations) in
- let l_hyps = id_concl :: List.remove Id.equal id_concl l_hyps' in
- let useful_hyps =
- List.map
- (fun id -> List.assoc_f Id.equal id full_reified_goal) l_hyps
+ (* Collect all hypotheses used in the solution tree *)
+ let useful_equa_ids = equas_of_solution_tree solution_tree in
+ let equations = List.map (get_equation env) (IntSet.elements useful_equa_ids)
in
- let useful_vars =
- let really_useful_vars = vars_of_equations equations in
- let concl_vars =
- vars_of_prop (List.assoc_f Id.equal id_concl full_reified_goal)
- in
- really_useful_vars @@ concl_vars
+ let hyps_of_eqns =
+ List.fold_left (fun s e -> Id.Set.add e.e_origin.o_hyp s) Id.Set.empty in
+ let hyps = hyps_of_eqns equations in
+ let useful_hypnames = Id.Set.elements (Id.Set.remove id_concl hyps) in
+ let all_names = id_concl :: useful_hypnames in
+ let useful_hyptypes =
+ List.map (fun id -> List.assoc_f Id.equal id reified_hyps) useful_hypnames
+ in
+ let useful_vars = vars_of_equations equations @@ vars_of_prop reified_concl
in
+
(* variables a introduire *)
let to_introduce = add_stated_equations env solution_tree in
let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
@@ -1212,13 +1225,14 @@ let resolution env full_reified_goal systems_list =
(* L'environnement de base se construit en deux morceaux :
- les variables des équations utiles (et de la conclusion)
- les nouvelles variables declarées durant les preuves *)
- let all_vars_env = useful_vars @ stated_vars in
+ let all_vars_env = (IntSet.elements useful_vars) @ stated_vars in
let basic_env =
let rec loop i = function
- var :: l ->
- let t = get_reified_atom env var in
- Hashtbl.add env.real_indices var i; t :: loop (succ i) l
- | [] -> [] in
+ | [] -> []
+ | var :: l ->
+ let t = get_reified_atom env var in
+ IntHtbl.add env.real_indices var i; t :: loop (succ i) l
+ in
loop 0 all_vars_env in
let env_terms_reified = mk_list (Lazy.force Z.typ) basic_env in
(* On peut maintenant généraliser le but : env est a jour *)
@@ -1227,15 +1241,13 @@ let resolution env full_reified_goal systems_list =
app coq_p_eq [| reified_of_formula env l;
reified_of_formula env r |])
to_introduce in
- let reified_concl =
- match useful_hyps with
- (Pnot p) :: _ -> reified_of_proposition env p
- | _ -> reified_of_proposition env Pfalse in
+ let reified_concl = reified_of_proposition env reified_concl in
let l_reified_terms =
- (List.map
+ List.map
(fun p ->
- reified_of_proposition env (really_useful_prop useful_equa_id p))
- (List.tl useful_hyps)) in
+ reified_of_proposition env (really_useful_prop useful_equa_ids p))
+ useful_hyptypes
+ in
let env_props_reified = mk_plist env.props in
let reified_goal =
mk_list (Lazy.force coq_proposition)
@@ -1251,7 +1263,7 @@ let resolution env full_reified_goal systems_list =
| ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
| (O_right :: l) -> app coq_p_right [| loop l |] in
let correct_index =
- let i = List.index0 Id.equal e.e_origin.o_hyp l_hyps in
+ let i = List.index0 Id.equal e.e_origin.o_hyp all_names in
(* PL: it seems that additionally introduced hyps are in the way during
normalization, hence this index shifting... *)
if Int.equal i 0 then 0 else Pervasives.(+) i (List.length to_introduce)
@@ -1261,13 +1273,13 @@ let resolution env full_reified_goal systems_list =
mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
let initial_context =
- List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in
+ List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) useful_hypnames in
let context =
CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
let decompose_tactic = decompose_tree env context solution_tree in
Tactics.generalize
- (l_generalize_arg @ List.map EConstr.mkVar (List.tl l_hyps)) >>
+ (l_generalize_arg @ List.map EConstr.mkVar useful_hypnames) >>
Tactics.change_concl reified >>
Tactics.apply (EConstr.of_constr (app coq_do_omega [|decompose_tactic; normalization_trace|])) >>
show_goal >>
@@ -1287,10 +1299,11 @@ let total_reflexive_omega_tactic =
rst_omega_var ();
try
let env = new_environment () in
- let full_reified_goal = reify_gl env gl in
+ let (concl,hyps) as reified_goal = reify_gl env gl in
+ let full_reified_goal = (id_concl,Pnot concl) :: hyps in
let systems_list = destructurate_hyps full_reified_goal in
if !debug then display_systems systems_list;
- resolution env full_reified_goal systems_list
+ resolution env reified_goal systems_list
with NO_CONTRADICTION -> CErrors.error "ROmega can't solve this system"
end }