aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/video_core/command_processor.cpp
blob: 243abe842c1df74a82eb21497f5e631b25b48115 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <boost/range/algorithm/fill.hpp>

#include "common/profiler.h"

#include "core/hle/service/gsp_gpu.h"
#include "core/hw/gpu.h"
#include "core/settings.h"

#include "debug_utils/debug_utils.h"

#include "clipper.h"
#include "command_processor.h"
#include "math.h"
#include "pica.h"
#include "primitive_assembly.h"
#include "renderer_base.h"
#include "vertex_shader.h"
#include "video_core.h"

namespace Pica {

namespace CommandProcessor {

static int float_regs_counter = 0;

static u32 uniform_write_buffer[4];

static int default_attr_counter = 0;

static u32 default_attr_write_buffer[3];

Common::Profiling::TimingCategory category_drawing("Drawing");

static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
    auto& regs = g_state.regs;

    if (id >= regs.NumIds())
        return;

    // If we're skipping this frame, only allow trigger IRQ
    if (GPU::g_skip_frame && id != PICA_REG_INDEX(trigger_irq))
        return;

    // TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value
    u32 old_value = regs[id];
    regs[id] = (old_value & ~mask) | (value & mask);

    if (g_debug_context)
        g_debug_context->OnEvent(DebugContext::Event::PicaCommandLoaded, reinterpret_cast<void*>(&id));

    DebugUtils::OnPicaRegWrite(id, regs[id]);

    switch(id) {
        // Trigger IRQ
        case PICA_REG_INDEX(trigger_irq):
            GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::P3D);
            break;

        // Load default vertex input attributes
        case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[0], 0x233):
        case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[1], 0x234):
        case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[2], 0x235):
        {
            // TODO: Does actual hardware indeed keep an intermediate buffer or does
            //       it directly write the values?
            default_attr_write_buffer[default_attr_counter++] = value;

            // Default attributes are written in a packed format such that four float24 values are encoded in
            // three 32-bit numbers. We write to internal memory once a full such vector is
            // written.
            if (default_attr_counter >= 3) {
                default_attr_counter = 0;

                auto& setup = regs.vs_default_attributes_setup;

                if (setup.index >= 16) {
                    LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index);
                    break;
                }

                Math::Vec4<float24>& attribute = g_state.vs.default_attributes[setup.index];

                // NOTE: The destination component order indeed is "backwards"
                attribute.w = float24::FromRawFloat24(default_attr_write_buffer[0] >> 8);
                attribute.z = float24::FromRawFloat24(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF));
                attribute.y = float24::FromRawFloat24(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF));
                attribute.x = float24::FromRawFloat24(default_attr_write_buffer[2] & 0xFFFFFF);

                LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index,
                          attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
                          attribute.w.ToFloat32());

                // TODO: Verify that this actually modifies the register!
                setup.index = setup.index + 1;
            }
            break;
        }

        case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[0], 0x23c):
        case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[1], 0x23d):
        {
            unsigned index = static_cast<unsigned>(id - PICA_REG_INDEX(command_buffer.trigger[0]));
            u32* head_ptr = (u32*)Memory::GetPhysicalPointer(regs.command_buffer.GetPhysicalAddress(index));
            g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr;
            g_state.cmd_list.length = regs.command_buffer.GetSize(index) / sizeof(u32);
            break;
        }

        // It seems like these trigger vertex rendering
        case PICA_REG_INDEX(trigger_draw):
        case PICA_REG_INDEX(trigger_draw_indexed):
        {
            Common::Profiling::ScopeTimer scope_timer(category_drawing);

#if PICA_LOG_TEV
            DebugUtils::DumpTevStageConfig(regs.GetTevStages());
#endif

            if (g_debug_context)
                g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);

            const auto& attribute_config = regs.vertex_attributes;
            const u32 base_address = attribute_config.GetPhysicalBaseAddress();

            // Information about internal vertex attributes
            u32 vertex_attribute_sources[16];
            boost::fill(vertex_attribute_sources, 0xdeadbeef);
            u32 vertex_attribute_strides[16] = {};
            Regs::VertexAttributeFormat vertex_attribute_formats[16] = {};

            u32 vertex_attribute_elements[16] = {};
            u32 vertex_attribute_element_size[16] = {};

            // Setup attribute data from loaders
            for (int loader = 0; loader < 12; ++loader) {
                const auto& loader_config = attribute_config.attribute_loaders[loader];

                u32 load_address = base_address + loader_config.data_offset;

                // TODO: What happens if a loader overwrites a previous one's data?
                for (unsigned component = 0; component < loader_config.component_count; ++component) {
                    u32 attribute_index = loader_config.GetComponent(component);
                    vertex_attribute_sources[attribute_index] = load_address;
                    vertex_attribute_strides[attribute_index] = static_cast<u32>(loader_config.byte_count);
                    vertex_attribute_formats[attribute_index] = attribute_config.GetFormat(attribute_index);
                    vertex_attribute_elements[attribute_index] = attribute_config.GetNumElements(attribute_index);
                    vertex_attribute_element_size[attribute_index] = attribute_config.GetElementSizeInBytes(attribute_index);
                    load_address += attribute_config.GetStride(attribute_index);
                }
            }

            // Load vertices
            bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed));

            const auto& index_info = regs.index_array;
            const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
            const u16* index_address_16 = (u16*)index_address_8;
            bool index_u16 = index_info.format != 0;

#if PICA_DUMP_GEOMETRY
            DebugUtils::GeometryDumper geometry_dumper;
            PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex> dumping_primitive_assembler(regs.triangle_topology.Value());
#endif
            PrimitiveAssembler<VertexShader::OutputVertex> primitive_assembler(regs.triangle_topology.Value());

            if (g_debug_context) {
                for (int i = 0; i < 3; ++i) {
                    const auto texture = regs.GetTextures()[i];
                    if (!texture.enabled)
                        continue;

                    u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
                    if (g_debug_context && Pica::g_debug_context->recorder)
                        g_debug_context->recorder->MemoryAccessed(texture_data, Pica::Regs::NibblesPerPixel(texture.format) * texture.config.width / 2 * texture.config.height, texture.config.GetPhysicalAddress());
                }
            }

            class {
                /// Combine overlapping and close ranges
                void SimplifyRanges() {
                    for (auto it = ranges.begin(); it != ranges.end(); ++it) {
                        // NOTE: We add 32 to the range end address to make sure "close" ranges are combined, too
                        auto it2 = std::next(it);
                        while (it2 != ranges.end() && it->first + it->second + 32 >= it2->first) {
                            it->second = std::max(it->second, it2->first + it2->second - it->first);
                            it2 = ranges.erase(it2);
                        }
                    }
                }

            public:
                /// Record a particular memory access in the list
                void AddAccess(u32 paddr, u32 size) {
                    // Create new range or extend existing one
                    ranges[paddr] = std::max(ranges[paddr], size);

                    // Simplify ranges...
                    SimplifyRanges();
                }

                /// Map of accessed ranges (mapping start address to range size)
                std::map<u32, u32> ranges;
            } memory_accesses;

            // Simple circular-replacement vertex cache
            // The size has been tuned for optimal balance between hit-rate and the cost of lookup
            const size_t VERTEX_CACHE_SIZE = 32;
            std::array<u16, VERTEX_CACHE_SIZE> vertex_cache_ids;
            std::array<VertexShader::OutputVertex, VERTEX_CACHE_SIZE> vertex_cache;

            unsigned int vertex_cache_pos = 0;
            vertex_cache_ids.fill(-1);

            for (unsigned int index = 0; index < regs.num_vertices; ++index)
            {
                unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index;

                // -1 is a common special value used for primitive restart. Since it's unknown if
                // the PICA supports it, and it would mess up the caching, guard against it here.
                ASSERT(vertex != -1);

                bool vertex_cache_hit = false;
                VertexShader::OutputVertex output;

                if (is_indexed) {
                    if (g_debug_context && Pica::g_debug_context->recorder) {
                        int size = index_u16 ? 2 : 1;
                        memory_accesses.AddAccess(base_address + index_info.offset + size * index, size);
                    }

                    for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) {
                        if (vertex == vertex_cache_ids[i]) {
                            output = vertex_cache[i];
                            vertex_cache_hit = true;
                            break;
                        }
                    }
                }

                if (!vertex_cache_hit) {
                    // Initialize data for the current vertex
                    VertexShader::InputVertex input;

                    for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) {
                        if (vertex_attribute_elements[i] != 0) {
                            // Default attribute values set if array elements have < 4 components. This
                            // is *not* carried over from the default attribute settings even if they're
                            // enabled for this attribute.
                            static const float24 zero = float24::FromFloat32(0.0f);
                            static const float24 one = float24::FromFloat32(1.0f);
                            input.attr[i] = Math::Vec4<float24>(zero, zero, zero, one);

                            // Load per-vertex data from the loader arrays
                            for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
                                u32 source_addr = vertex_attribute_sources[i] + vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i];
                                const u8* srcdata = Memory::GetPhysicalPointer(source_addr);

                                if (g_debug_context && Pica::g_debug_context->recorder) {
                                    memory_accesses.AddAccess(source_addr,
                                        (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::FLOAT) ? 4
                                        : (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::SHORT) ? 2 : 1);
                                }

                                const float srcval = (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::BYTE) ? *(s8*)srcdata :
                                    (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::UBYTE) ? *(u8*)srcdata :
                                    (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::SHORT) ? *(s16*)srcdata :
                                    *(float*)srcdata;

                                input.attr[i][comp] = float24::FromFloat32(srcval);
                                LOG_TRACE(HW_GPU, "Loaded component %x of attribute %x for vertex %x (index %x) from 0x%08x + 0x%08lx + 0x%04lx: %f",
                                    comp, i, vertex, index,
                                    attribute_config.GetPhysicalBaseAddress(),
                                    vertex_attribute_sources[i] - base_address,
                                    vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i],
                                    input.attr[i][comp].ToFloat32());
                            }
                        } else if (attribute_config.IsDefaultAttribute(i)) {
                            // Load the default attribute if we're configured to do so
                            input.attr[i] = g_state.vs.default_attributes[i];
                            LOG_TRACE(HW_GPU, "Loaded default attribute %x for vertex %x (index %x): (%f, %f, %f, %f)",
                                      i, vertex, index,
                                      input.attr[i][0].ToFloat32(), input.attr[i][1].ToFloat32(),
                                      input.attr[i][2].ToFloat32(), input.attr[i][3].ToFloat32());
                        } else {
                            // TODO(yuriks): In this case, no data gets loaded and the vertex
                            // remains with the last value it had. This isn't currently maintained
                            // as global state, however, and so won't work in Citra yet.
                        }
                    }

                    if (g_debug_context)
                        g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, (void*)&input);

#if PICA_DUMP_GEOMETRY
                    // NOTE: When dumping geometry, we simply assume that the first input attribute
                    //       corresponds to the position for now.
                    DebugUtils::GeometryDumper::Vertex dumped_vertex = {
                        input.attr[0][0].ToFloat32(), input.attr[0][1].ToFloat32(), input.attr[0][2].ToFloat32()
                    };
                    using namespace std::placeholders;
                    dumping_primitive_assembler.SubmitVertex(dumped_vertex,
                                                             std::bind(&DebugUtils::GeometryDumper::AddTriangle,
                                                                       &geometry_dumper, _1, _2, _3));
#endif

                    // Send to vertex shader
                    output = VertexShader::RunShader(input, attribute_config.GetNumTotalAttributes(), g_state.regs.vs, g_state.vs);

                    if (is_indexed) {
                        vertex_cache[vertex_cache_pos] = output;
                        vertex_cache_ids[vertex_cache_pos] = vertex;
                        vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE;
                    }
                }

                if (Settings::values.use_hw_renderer) {
                    // Send to hardware renderer
                    static auto AddHWTriangle = [](const Pica::VertexShader::OutputVertex& v0,
                                                   const Pica::VertexShader::OutputVertex& v1,
                                                   const Pica::VertexShader::OutputVertex& v2) {
                        VideoCore::g_renderer->hw_rasterizer->AddTriangle(v0, v1, v2);
                    };

                    primitive_assembler.SubmitVertex(output, AddHWTriangle);
                } else {
                    // Send to triangle clipper
                    primitive_assembler.SubmitVertex(output, Clipper::ProcessTriangle);
                }
            }

            for (auto& range : memory_accesses.ranges) {
                g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first),
                                                          range.second, range.first);
            }

            if (Settings::values.use_hw_renderer) {
                VideoCore::g_renderer->hw_rasterizer->DrawTriangles();
            }

#if PICA_DUMP_GEOMETRY
            geometry_dumper.Dump();
#endif

            if (g_debug_context) {
                g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
            }

            break;
        }

        case PICA_REG_INDEX(vs.bool_uniforms):
            for (unsigned i = 0; i < 16; ++i)
                g_state.vs.uniforms.b[i] = (regs.vs.bool_uniforms.Value() & (1 << i)) != 0;

            break;

        case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1):
        case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[1], 0x2b2):
        case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[2], 0x2b3):
        case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[3], 0x2b4):
        {
            int index = (id - PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1));
            auto values = regs.vs.int_uniforms[index];
            g_state.vs.uniforms.i[index] = Math::Vec4<u8>(values.x, values.y, values.z, values.w);
            LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x",
                      index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value());
            break;
        }

        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[0], 0x2c1):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[1], 0x2c2):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[2], 0x2c3):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[3], 0x2c4):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[4], 0x2c5):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[5], 0x2c6):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[6], 0x2c7):
        case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[7], 0x2c8):
        {
            auto& uniform_setup = regs.vs.uniform_setup;

            // TODO: Does actual hardware indeed keep an intermediate buffer or does
            //       it directly write the values?
            uniform_write_buffer[float_regs_counter++] = value;

            // Uniforms are written in a packed format such that four float24 values are encoded in
            // three 32-bit numbers. We write to internal memory once a full such vector is
            // written.
            if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) ||
                (float_regs_counter >= 3 && !uniform_setup.IsFloat32())) {
                float_regs_counter = 0;

                auto& uniform = g_state.vs.uniforms.f[uniform_setup.index];

                if (uniform_setup.index > 95) {
                    LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index);
                    break;
                }

                // NOTE: The destination component order indeed is "backwards"
                if (uniform_setup.IsFloat32()) {
                    for (auto i : {0,1,2,3})
                        uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i]));
                } else {
                    // TODO: Untested
                    uniform.w = float24::FromRawFloat24(uniform_write_buffer[0] >> 8);
                    uniform.z = float24::FromRawFloat24(((uniform_write_buffer[0] & 0xFF)<<16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF));
                    uniform.y = float24::FromRawFloat24(((uniform_write_buffer[1] & 0xFFFF)<<8) | ((uniform_write_buffer[2] >> 24) & 0xFF));
                    uniform.x = float24::FromRawFloat24(uniform_write_buffer[2] & 0xFFFFFF);
                }

                LOG_TRACE(HW_GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index,
                          uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(),
                          uniform.w.ToFloat32());

                // TODO: Verify that this actually modifies the register!
                uniform_setup.index = uniform_setup.index + 1;
            }
            break;
        }

        // Load shader program code
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[0], 0x2cc):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[1], 0x2cd):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[2], 0x2ce):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[3], 0x2cf):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[4], 0x2d0):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[5], 0x2d1):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[6], 0x2d2):
        case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[7], 0x2d3):
        {
            g_state.vs.program_code[regs.vs.program.offset] = value;
            regs.vs.program.offset++;
            break;
        }

        // Load swizzle pattern data
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[0], 0x2d6):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[1], 0x2d7):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[2], 0x2d8):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[3], 0x2d9):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[4], 0x2da):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[5], 0x2db):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[6], 0x2dc):
        case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[7], 0x2dd):
        {
            g_state.vs.swizzle_data[regs.vs.swizzle_patterns.offset] = value;
            regs.vs.swizzle_patterns.offset++;
            break;
        }

        default:
            break;
    }

    VideoCore::g_renderer->hw_rasterizer->NotifyPicaRegisterChanged(id);

    if (g_debug_context)
        g_debug_context->OnEvent(DebugContext::Event::PicaCommandProcessed, reinterpret_cast<void*>(&id));
}

void ProcessCommandList(const u32* list, u32 size) {
    g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = list;
    g_state.cmd_list.length = size / sizeof(u32);

    while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) {
        // Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF
        static const u32 expand_bits_to_bytes[] = {
            0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff,
            0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff,
            0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff,
            0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff
        };

        // Align read pointer to 8 bytes
        if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0)
            ++g_state.cmd_list.current_ptr;

        u32 value = *g_state.cmd_list.current_ptr++;
        const CommandHeader header = { *g_state.cmd_list.current_ptr++ };
        const u32 write_mask = expand_bits_to_bytes[header.parameter_mask];
        u32 cmd = header.cmd_id;

        WritePicaReg(cmd, value, write_mask);

        for (unsigned i = 0; i < header.extra_data_length; ++i) {
            u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0);
            WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, write_mask);
         }
    }
}

} // namespace

} // namespace