// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #include "pica.h" #include "vertex_shader.h" #include "debug_utils/debug_utils.h" using nihstro::Instruction; using nihstro::RegisterType; using nihstro::SourceRegister; using nihstro::SwizzlePattern; namespace Pica { namespace VertexShader { static struct { Math::Vec4 f[96]; std::array b; } shader_uniforms; // TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to! // For now, we just keep these local arrays around. static std::array shader_memory; static std::array swizzle_data; void SubmitShaderMemoryChange(u32 addr, u32 value) { shader_memory[addr] = value; } void SubmitSwizzleDataChange(u32 addr, u32 value) { swizzle_data[addr] = value; } Math::Vec4& GetFloatUniform(u32 index) { return shader_uniforms.f[index]; } bool& GetBoolUniform(u32 index) { return shader_uniforms.b[index]; } const std::array& GetShaderBinary() { return shader_memory; } const std::array& GetSwizzlePatterns() { return swizzle_data; } // TODO: Is there actually a limit on hardware? const int if_stack_size = 8; struct VertexShaderState { u32* program_counter; const float24* input_register_table[16]; float24* output_register_table[7*4]; Math::Vec4 temporary_registers[16]; bool conditional_code[2]; // Two Address registers and one loop counter // TODO: How many bits do these actually have? s32 address_registers[3]; enum { INVALID_ADDRESS = 0xFFFFFFFF }; u32 call_stack[8]; // TODO: What is the maximal call stack depth? u32* call_stack_pointer; struct IfStackElement { u32 else_addr; u32 else_instructions; } if_stack[if_stack_size]; IfStackElement* if_stack_pointer; struct { u32 max_offset; // maximum program counter ever reached u32 max_opdesc_id; // maximum swizzle pattern index ever used } debug; }; static void ProcessShaderCode(VertexShaderState& state) { while (true) { bool increment_pc = true; bool exit_loop = false; const Instruction& instr = *(const Instruction*)state.program_counter; const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id]; state.debug.max_offset = std::max(state.debug.max_offset, 1 + (state.program_counter - shader_memory.data())); auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* { switch (source_reg.GetRegisterType()) { case RegisterType::Input: return state.input_register_table[source_reg.GetIndex()]; case RegisterType::Temporary: return &state.temporary_registers[source_reg.GetIndex()].x; case RegisterType::FloatUniform: return &shader_uniforms.f[source_reg.GetIndex()].x; } }; switch (instr.opcode.GetInfo().type) { case Instruction::OpCodeType::Arithmetic: { bool is_inverted = 0 != (instr.opcode.GetInfo().subtype & Instruction::OpCodeInfo::SrcInversed); if (is_inverted) { // We don't really support this properly and/or reliably LOG_ERROR(HW_GPU, "Bad condition..."); exit(0); } const int address_offset = (instr.common.address_register_index == 0) ? 0 : state.address_registers[instr.common.address_register_index - 1]; const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + address_offset); const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted)); const bool negate_src1 = (swizzle.negate_src1 != false); const bool negate_src2 = (swizzle.negate_src2 != false); float24 src1[4] = { src1_[(int)swizzle.GetSelectorSrc1(0)], src1_[(int)swizzle.GetSelectorSrc1(1)], src1_[(int)swizzle.GetSelectorSrc1(2)], src1_[(int)swizzle.GetSelectorSrc1(3)], }; if (negate_src1) { src1[0] = src1[0] * float24::FromFloat32(-1); src1[1] = src1[1] * float24::FromFloat32(-1); src1[2] = src1[2] * float24::FromFloat32(-1); src1[3] = src1[3] * float24::FromFloat32(-1); } float24 src2[4] = { src2_[(int)swizzle.GetSelectorSrc2(0)], src2_[(int)swizzle.GetSelectorSrc2(1)], src2_[(int)swizzle.GetSelectorSrc2(2)], src2_[(int)swizzle.GetSelectorSrc2(3)], }; if (negate_src2) { src2[0] = src2[0] * float24::FromFloat32(-1); src2[1] = src2[1] * float24::FromFloat32(-1); src2[2] = src2[2] * float24::FromFloat32(-1); src2[3] = src2[3] * float24::FromFloat32(-1); } float24* dest = (instr.common.dest < 0x08) ? state.output_register_table[4*instr.common.dest.GetIndex()] : (instr.common.dest < 0x10) ? nullptr : (instr.common.dest < 0x20) ? &state.temporary_registers[instr.common.dest.GetIndex()][0] : nullptr; state.debug.max_opdesc_id = std::max(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id); switch (instr.opcode) { case Instruction::OpCode::ADD: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] + src2[i]; } break; } case Instruction::OpCode::MUL: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i]; } break; } case Instruction::OpCode::MAX: for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = std::max(src1[i], src2[i]); } break; case Instruction::OpCode::DP3: case Instruction::OpCode::DP4: { float24 dot = float24::FromFloat32(0.f); int num_components = (instr.opcode == Instruction::OpCode::DP3) ? 3 : 4; for (int i = 0; i < num_components; ++i) dot = dot + src1[i] * src2[i]; for (int i = 0; i < num_components; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = dot; } break; } // Reciprocal case Instruction::OpCode::RCP: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Be stable against division by zero! // TODO: I think this might be wrong... we should only use one component here dest[i] = float24::FromFloat32(1.0 / src1[i].ToFloat32()); } break; } // Reciprocal Square Root case Instruction::OpCode::RSQ: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Be stable against division by zero! // TODO: I think this might be wrong... we should only use one component here dest[i] = float24::FromFloat32(1.0 / sqrt(src1[i].ToFloat32())); } break; } case Instruction::OpCode::MOVA: { for (int i = 0; i < 2; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Figure out how the rounding is done on hardware state.address_registers[i] = static_cast(src1[i].ToFloat32()); } break; } case Instruction::OpCode::MOV: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i]; } break; } case Instruction::OpCode::CMP: for (int i = 0; i < 2; ++i) { // TODO: Can you restrict to one compare via dest masking? auto compare_op = instr.common.compare_op; auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value(); switch (op) { case compare_op.Equal: state.conditional_code[i] = (src1[i] == src2[i]); break; case compare_op.NotEqual: state.conditional_code[i] = (src1[i] != src2[i]); break; case compare_op.LessThan: state.conditional_code[i] = (src1[i] < src2[i]); break; case compare_op.LessEqual: state.conditional_code[i] = (src1[i] <= src2[i]); break; case compare_op.GreaterThan: state.conditional_code[i] = (src1[i] > src2[i]); break; case compare_op.GreaterEqual: state.conditional_code[i] = (src1[i] >= src2[i]); break; default: LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast(op)); break; } } break; default: LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex); _dbg_assert_(HW_GPU, 0); break; } break; } default: // Handle each instruction on its own switch (instr.opcode) { // NOP is currently used as a heuristic for leaving from a function. // TODO: This is completely incorrect. case Instruction::OpCode::NOP: if (*state.call_stack_pointer == VertexShaderState::INVALID_ADDRESS) { exit_loop = true; } else { // Jump back to call stack position, invalidate call stack entry, move up call stack pointer state.program_counter = &shader_memory[*state.call_stack_pointer]; *state.call_stack_pointer-- = VertexShaderState::INVALID_ADDRESS; } break; case Instruction::OpCode::CALL: increment_pc = false; _dbg_assert_(HW_GPU, state.call_stack_pointer - state.call_stack < sizeof(state.call_stack)); *++state.call_stack_pointer = state.program_counter - shader_memory.data(); state.program_counter = &shader_memory[instr.flow_control.dest_offset]; break; case Instruction::OpCode::END: // TODO break; case Instruction::OpCode::IFC: { // TODO: Do we need to consider swizzlers here? auto flow_control = instr.flow_control; bool results[3] = { flow_control.refx == state.conditional_code[0], flow_control.refy == state.conditional_code[1] }; switch (flow_control.op) { case flow_control.Or: results[2] = results[0] || results[1]; break; case flow_control.And: results[2] = results[0] && results[1]; break; case flow_control.JustX: results[2] = results[0]; break; case flow_control.JustY: results[2] = results[1]; break; } if (results[2]) { ++state.if_stack_pointer; state.if_stack_pointer->else_addr = instr.flow_control.dest_offset; state.if_stack_pointer->else_instructions = instr.flow_control.num_instructions; } else { state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1; } break; } default: LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex); break; } break; } if (increment_pc) ++state.program_counter; if (state.if_stack_pointer >= &state.if_stack[0]) { if (state.program_counter - shader_memory.data() == state.if_stack_pointer->else_addr) { state.program_counter += state.if_stack_pointer->else_instructions; state.if_stack_pointer--; } } if (exit_loop) break; } } OutputVertex RunShader(const InputVertex& input, int num_attributes) { VertexShaderState state; const u32* main = &shader_memory[registers.vs_main_offset]; state.program_counter = (u32*)main; state.debug.max_offset = 0; state.debug.max_opdesc_id = 0; // Setup input register table const auto& attribute_register_map = registers.vs_input_register_map; float24 dummy_register; boost::fill(state.input_register_table, &dummy_register); if(num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x; if(num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x; if(num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x; if(num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x; if(num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x; if(num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x; if(num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x; if(num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x; if(num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x; if(num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x; if(num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x; if(num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x; if(num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x; if(num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x; if(num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x; if(num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x; // Setup output register table OutputVertex ret; for (int i = 0; i < 7; ++i) { const auto& output_register_map = registers.vs_output_attributes[i]; u32 semantics[4] = { output_register_map.map_x, output_register_map.map_y, output_register_map.map_z, output_register_map.map_w }; for (int comp = 0; comp < 4; ++comp) state.output_register_table[4*i+comp] = ((float24*)&ret) + semantics[comp]; } state.conditional_code[0] = false; state.conditional_code[1] = false; boost::fill(state.call_stack, VertexShaderState::INVALID_ADDRESS); state.call_stack_pointer = &state.call_stack[0]; std::fill(state.if_stack, state.if_stack + sizeof(state.if_stack) / sizeof(state.if_stack[0]), VertexShaderState::IfStackElement{VertexShaderState::INVALID_ADDRESS, VertexShaderState::INVALID_ADDRESS}); state.if_stack_pointer = state.if_stack - 1; // Meh. TODO: Make this less ugly ProcessShaderCode(state); DebugUtils::DumpShader(shader_memory.data(), state.debug.max_offset, swizzle_data.data(), state.debug.max_opdesc_id, registers.vs_main_offset, registers.vs_output_attributes); LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)", ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32()); return ret; } } // namespace } // namespace