// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/profiler.h" #include "pica.h" #include "vertex_shader.h" #include "debug_utils/debug_utils.h" using nihstro::OpCode; using nihstro::Instruction; using nihstro::RegisterType; using nihstro::SourceRegister; using nihstro::SwizzlePattern; namespace Pica { namespace VertexShader { struct VertexShaderState { u32 program_counter; const float24* input_register_table[16]; Math::Vec4 output_registers[16]; Math::Vec4 temporary_registers[16]; bool conditional_code[2]; // Two Address registers and one loop counter // TODO: How many bits do these actually have? s32 address_registers[3]; enum { INVALID_ADDRESS = 0xFFFFFFFF }; struct CallStackElement { u32 final_address; // Address upon which we jump to return_address u32 return_address; // Where to jump when leaving scope u8 repeat_counter; // How often to repeat until this call stack element is removed u8 loop_increment; // Which value to add to the loop counter after an iteration // TODO: Should this be a signed value? Does it even matter? u32 loop_address; // The address where we'll return to after each loop iteration }; // TODO: Is there a maximal size for this? boost::container::static_vector call_stack; struct { u32 max_offset; // maximum program counter ever reached u32 max_opdesc_id; // maximum swizzle pattern index ever used } debug; }; static void ProcessShaderCode(VertexShaderState& state) { const auto& uniforms = g_state.vs.uniforms; const auto& swizzle_data = g_state.vs.swizzle_data; const auto& program_code = g_state.vs.program_code; // Placeholder for invalid inputs static float24 dummy_vec4_float24[4]; while (true) { if (!state.call_stack.empty()) { auto& top = state.call_stack.back(); if (state.program_counter == top.final_address) { state.address_registers[2] += top.loop_increment; if (top.repeat_counter-- == 0) { state.program_counter = top.return_address; state.call_stack.pop_back(); } else { state.program_counter = top.loop_address; } // TODO: Is "trying again" accurate to hardware? continue; } } bool exit_loop = false; const Instruction instr = { program_code[state.program_counter] }; const SwizzlePattern swizzle = { swizzle_data[instr.common.operand_desc_id] }; static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions, u32 return_offset, u8 repeat_count, u8 loop_increment) { state.program_counter = offset - 1; // -1 to make sure when incrementing the PC we end up at the correct offset ASSERT(state.call_stack.size() < state.call_stack.capacity()); state.call_stack.push_back({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset }); }; state.debug.max_offset = std::max(state.debug.max_offset, 1 + state.program_counter); auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* { switch (source_reg.GetRegisterType()) { case RegisterType::Input: return state.input_register_table[source_reg.GetIndex()]; case RegisterType::Temporary: return &state.temporary_registers[source_reg.GetIndex()].x; case RegisterType::FloatUniform: return &uniforms.f[source_reg.GetIndex()].x; default: return dummy_vec4_float24; } }; switch (instr.opcode.Value().GetInfo().type) { case OpCode::Type::Arithmetic: { const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed)); const int address_offset = (instr.common.address_register_index == 0) ? 0 : state.address_registers[instr.common.address_register_index - 1]; const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + (!is_inverted * address_offset)); const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted) + ( is_inverted * address_offset)); const bool negate_src1 = ((bool)swizzle.negate_src1 != false); const bool negate_src2 = ((bool)swizzle.negate_src2 != false); float24 src1[4] = { src1_[(int)swizzle.GetSelectorSrc1(0)], src1_[(int)swizzle.GetSelectorSrc1(1)], src1_[(int)swizzle.GetSelectorSrc1(2)], src1_[(int)swizzle.GetSelectorSrc1(3)], }; if (negate_src1) { src1[0] = src1[0] * float24::FromFloat32(-1); src1[1] = src1[1] * float24::FromFloat32(-1); src1[2] = src1[2] * float24::FromFloat32(-1); src1[3] = src1[3] * float24::FromFloat32(-1); } float24 src2[4] = { src2_[(int)swizzle.GetSelectorSrc2(0)], src2_[(int)swizzle.GetSelectorSrc2(1)], src2_[(int)swizzle.GetSelectorSrc2(2)], src2_[(int)swizzle.GetSelectorSrc2(3)], }; if (negate_src2) { src2[0] = src2[0] * float24::FromFloat32(-1); src2[1] = src2[1] * float24::FromFloat32(-1); src2[2] = src2[2] * float24::FromFloat32(-1); src2[3] = src2[3] * float24::FromFloat32(-1); } float24* dest = (instr.common.dest.Value() < 0x10) ? &state.output_registers[instr.common.dest.Value().GetIndex()][0] : (instr.common.dest.Value() < 0x20) ? &state.temporary_registers[instr.common.dest.Value().GetIndex()][0] : dummy_vec4_float24; state.debug.max_opdesc_id = std::max(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id); switch (instr.opcode.Value().EffectiveOpCode()) { case OpCode::Id::ADD: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] + src2[i]; } break; } case OpCode::Id::MUL: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i]; } break; } case OpCode::Id::FLR: for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = float24::FromFloat32(std::floor(src1[i].ToFloat32())); } break; case OpCode::Id::MAX: for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = std::max(src1[i], src2[i]); } break; case OpCode::Id::MIN: for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = std::min(src1[i], src2[i]); } break; case OpCode::Id::DP3: case OpCode::Id::DP4: { float24 dot = float24::FromFloat32(0.f); int num_components = (instr.opcode.Value() == OpCode::Id::DP3) ? 3 : 4; for (int i = 0; i < num_components; ++i) dot = dot + src1[i] * src2[i]; for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = dot; } break; } // Reciprocal case OpCode::Id::RCP: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Be stable against division by zero! // TODO: I think this might be wrong... we should only use one component here dest[i] = float24::FromFloat32(1.0f / src1[i].ToFloat32()); } break; } // Reciprocal Square Root case OpCode::Id::RSQ: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Be stable against division by zero! // TODO: I think this might be wrong... we should only use one component here dest[i] = float24::FromFloat32(1.0f / sqrt(src1[i].ToFloat32())); } break; } case OpCode::Id::MOVA: { for (int i = 0; i < 2; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Figure out how the rounding is done on hardware state.address_registers[i] = static_cast(src1[i].ToFloat32()); } break; } case OpCode::Id::MOV: { for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i]; } break; } case OpCode::Id::SLT: case OpCode::Id::SLTI: for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = (src1[i] < src2[i]) ? float24::FromFloat32(1.0f) : float24::FromFloat32(0.0f); } break; case OpCode::Id::CMP: for (int i = 0; i < 2; ++i) { // TODO: Can you restrict to one compare via dest masking? auto compare_op = instr.common.compare_op; auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value(); switch (op) { case compare_op.Equal: state.conditional_code[i] = (src1[i] == src2[i]); break; case compare_op.NotEqual: state.conditional_code[i] = (src1[i] != src2[i]); break; case compare_op.LessThan: state.conditional_code[i] = (src1[i] < src2[i]); break; case compare_op.LessEqual: state.conditional_code[i] = (src1[i] <= src2[i]); break; case compare_op.GreaterThan: state.conditional_code[i] = (src1[i] > src2[i]); break; case compare_op.GreaterEqual: state.conditional_code[i] = (src1[i] >= src2[i]); break; default: LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast(op)); break; } } break; default: LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); DEBUG_ASSERT(false); break; } break; } case OpCode::Type::MultiplyAdd: { if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) || (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) { const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.mad.operand_desc_id]; bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI); const float24* src1_ = LookupSourceRegister(instr.mad.GetSrc1(is_inverted)); const float24* src2_ = LookupSourceRegister(instr.mad.GetSrc2(is_inverted)); const float24* src3_ = LookupSourceRegister(instr.mad.GetSrc3(is_inverted)); const bool negate_src1 = ((bool)swizzle.negate_src1 != false); const bool negate_src2 = ((bool)swizzle.negate_src2 != false); const bool negate_src3 = ((bool)swizzle.negate_src3 != false); float24 src1[4] = { src1_[(int)swizzle.GetSelectorSrc1(0)], src1_[(int)swizzle.GetSelectorSrc1(1)], src1_[(int)swizzle.GetSelectorSrc1(2)], src1_[(int)swizzle.GetSelectorSrc1(3)], }; if (negate_src1) { src1[0] = src1[0] * float24::FromFloat32(-1); src1[1] = src1[1] * float24::FromFloat32(-1); src1[2] = src1[2] * float24::FromFloat32(-1); src1[3] = src1[3] * float24::FromFloat32(-1); } float24 src2[4] = { src2_[(int)swizzle.GetSelectorSrc2(0)], src2_[(int)swizzle.GetSelectorSrc2(1)], src2_[(int)swizzle.GetSelectorSrc2(2)], src2_[(int)swizzle.GetSelectorSrc2(3)], }; if (negate_src2) { src2[0] = src2[0] * float24::FromFloat32(-1); src2[1] = src2[1] * float24::FromFloat32(-1); src2[2] = src2[2] * float24::FromFloat32(-1); src2[3] = src2[3] * float24::FromFloat32(-1); } float24 src3[4] = { src3_[(int)swizzle.GetSelectorSrc3(0)], src3_[(int)swizzle.GetSelectorSrc3(1)], src3_[(int)swizzle.GetSelectorSrc3(2)], src3_[(int)swizzle.GetSelectorSrc3(3)], }; if (negate_src3) { src3[0] = src3[0] * float24::FromFloat32(-1); src3[1] = src3[1] * float24::FromFloat32(-1); src3[2] = src3[2] * float24::FromFloat32(-1); src3[3] = src3[3] * float24::FromFloat32(-1); } float24* dest = (instr.mad.dest.Value() < 0x10) ? &state.output_registers[instr.mad.dest.Value().GetIndex()][0] : (instr.mad.dest.Value() < 0x20) ? &state.temporary_registers[instr.mad.dest.Value().GetIndex()][0] : dummy_vec4_float24; for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i] + src3[i]; } } else { LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); } break; } default: { static auto evaluate_condition = [](const VertexShaderState& state, bool refx, bool refy, Instruction::FlowControlType flow_control) { bool results[2] = { refx == state.conditional_code[0], refy == state.conditional_code[1] }; switch (flow_control.op) { case flow_control.Or: return results[0] || results[1]; case flow_control.And: return results[0] && results[1]; case flow_control.JustX: return results[0]; case flow_control.JustY: return results[1]; } }; // Handle each instruction on its own switch (instr.opcode.Value()) { case OpCode::Id::END: exit_loop = true; break; case OpCode::Id::JMPC: if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { state.program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::JMPU: if (uniforms.b[instr.flow_control.bool_uniform_id]) { state.program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::CALL: call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, state.program_counter + 1, 0, 0); break; case OpCode::Id::CALLU: if (uniforms.b[instr.flow_control.bool_uniform_id]) { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, state.program_counter + 1, 0, 0); } break; case OpCode::Id::CALLC: if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, state.program_counter + 1, 0, 0); } break; case OpCode::Id::NOP: break; case OpCode::Id::IFU: if (uniforms.b[instr.flow_control.bool_uniform_id]) { call(state, state.program_counter + 1, instr.flow_control.dest_offset - state.program_counter - 1, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; case OpCode::Id::IFC: { // TODO: Do we need to consider swizzlers here? if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { call(state, state.program_counter + 1, instr.flow_control.dest_offset - state.program_counter - 1, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; } case OpCode::Id::LOOP: { state.address_registers[2] = uniforms.i[instr.flow_control.int_uniform_id].y; call(state, state.program_counter + 1, instr.flow_control.dest_offset - state.program_counter + 1, instr.flow_control.dest_offset + 1, uniforms.i[instr.flow_control.int_uniform_id].x, uniforms.i[instr.flow_control.int_uniform_id].z); break; } default: LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); break; } break; } } ++state.program_counter; if (exit_loop) break; } } static Common::Profiling::TimingCategory shader_category("Vertex Shader"); OutputVertex RunShader(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const State::ShaderSetup& setup) { Common::Profiling::ScopeTimer timer(shader_category); VertexShaderState state; state.program_counter = config.main_offset; state.debug.max_offset = 0; state.debug.max_opdesc_id = 0; // Setup input register table const auto& attribute_register_map = config.input_register_map; float24 dummy_register; boost::fill(state.input_register_table, &dummy_register); if (num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x; if (num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x; if (num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x; if (num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x; if (num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x; if (num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x; if (num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x; if (num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x; if (num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x; if (num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x; if (num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x; if (num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x; if (num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x; if (num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x; if (num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x; if (num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x; state.conditional_code[0] = false; state.conditional_code[1] = false; ProcessShaderCode(state); #if PICA_DUMP_SHADERS DebugUtils::DumpShader(setup.program_code.data(), state.debug.max_offset, setup.swizzle_data.data(), state.debug.max_opdesc_id, config.main_offset, g_state.regs.vs_output_attributes); // TODO: Don't hardcode VS here #endif // Setup output data OutputVertex ret; // TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to // figure out what those circumstances are and enable the remaining outputs then. for (int i = 0; i < 7; ++i) { const auto& output_register_map = g_state.regs.vs_output_attributes[i]; // TODO: Don't hardcode VS here u32 semantics[4] = { output_register_map.map_x, output_register_map.map_y, output_register_map.map_z, output_register_map.map_w }; for (int comp = 0; comp < 4; ++comp) { float24* out = ((float24*)&ret) + semantics[comp]; if (semantics[comp] != Regs::VSOutputAttributes::INVALID) { *out = state.output_registers[i][comp]; } else { // Zero output so that attributes which aren't output won't have denormals in them, // which would slow us down later. memset(out, 0, sizeof(*out)); } } } // The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation for (int i = 0; i < 4; ++i) { ret.color[i] = float24::FromFloat32( std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f)); } LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)", ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32()); return ret; } } // namespace } // namespace