// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include "clipper.h" #include "pica.h" #include "rasterizer.h" #include "vertex_shader.h" namespace Pica { namespace Clipper { struct ClippingEdge { public: enum Type { POS_X = 0, NEG_X = 1, POS_Y = 2, NEG_Y = 3, POS_Z = 4, NEG_Z = 5, }; ClippingEdge(Type type, float24 position) : type(type), pos(position) {} bool IsInside(const OutputVertex& vertex) const { switch (type) { case POS_X: return vertex.pos.x <= pos * vertex.pos.w; case NEG_X: return vertex.pos.x >= pos * vertex.pos.w; case POS_Y: return vertex.pos.y <= pos * vertex.pos.w; case NEG_Y: return vertex.pos.y >= pos * vertex.pos.w; // TODO: Check z compares ... should be 0..1 instead? case POS_Z: return vertex.pos.z <= pos * vertex.pos.w; default: case NEG_Z: return vertex.pos.z >= pos * vertex.pos.w; } } bool IsOutSide(const OutputVertex& vertex) const { return !IsInside(vertex); } OutputVertex GetIntersection(const OutputVertex& v0, const OutputVertex& v1) const { auto dotpr = [this](const OutputVertex& vtx) { switch (type) { case POS_X: return vtx.pos.x - vtx.pos.w; case NEG_X: return -vtx.pos.x - vtx.pos.w; case POS_Y: return vtx.pos.y - vtx.pos.w; case NEG_Y: return -vtx.pos.y - vtx.pos.w; // TODO: Verify z clipping case POS_Z: return vtx.pos.z - vtx.pos.w; default: case NEG_Z: return -vtx.pos.w; } }; float24 dp = dotpr(v0); float24 dp_prev = dotpr(v1); float24 factor = dp_prev / (dp_prev - dp); return OutputVertex::Lerp(factor, v0, v1); } private: Type type; float24 pos; }; static void InitScreenCoordinates(OutputVertex& vtx) { struct { float24 halfsize_x; float24 offset_x; float24 halfsize_y; float24 offset_y; float24 zscale; float24 offset_z; } viewport; viewport.halfsize_x = float24::FromRawFloat24(registers.viewport_size_x); viewport.halfsize_y = float24::FromRawFloat24(registers.viewport_size_y); viewport.offset_x = float24::FromFloat32(static_cast(registers.viewport_corner.x)); viewport.offset_y = float24::FromFloat32(static_cast(registers.viewport_corner.y)); viewport.zscale = float24::FromRawFloat24(registers.viewport_depth_range); viewport.offset_z = float24::FromRawFloat24(registers.viewport_depth_far_plane); // TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not vtx.screenpos[0] = (vtx.pos.x / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; vtx.screenpos[1] = (vtx.pos.y / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; vtx.screenpos[2] = viewport.offset_z - vtx.pos.z / vtx.pos.w * viewport.zscale; } void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { // TODO (neobrain): // The list of output vertices has some fixed maximum size, // however I haven't taken the time to figure out what it is exactly. // For now, we hence just assume a maximal size of 1000 vertices. const size_t max_vertices = 1000; std::vector buffer_vertices; std::vector output_list{ &v0, &v1, &v2 }; // Make sure to reserve space for all vertices. // Without this, buffer reallocation would invalidate references. buffer_vertices.reserve(max_vertices); // Simple implementation of the Sutherland-Hodgman clipping algorithm. // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here) for (auto edge : { ClippingEdge(ClippingEdge::POS_X, float24::FromFloat32(+1.0)), ClippingEdge(ClippingEdge::NEG_X, float24::FromFloat32(-1.0)), ClippingEdge(ClippingEdge::POS_Y, float24::FromFloat32(+1.0)), ClippingEdge(ClippingEdge::NEG_Y, float24::FromFloat32(-1.0)), ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)), ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) { const std::vector input_list = output_list; output_list.clear(); const OutputVertex* reference_vertex = input_list.back(); for (const auto& vertex : input_list) { // NOTE: This algorithm changes vertex order in some cases! if (edge.IsInside(*vertex)) { if (edge.IsOutSide(*reference_vertex)) { buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); output_list.push_back(&(buffer_vertices.back())); } output_list.push_back(vertex); } else if (edge.IsInside(*reference_vertex)) { buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); output_list.push_back(&(buffer_vertices.back())); } reference_vertex = vertex; } // Need to have at least a full triangle to continue... if (output_list.size() < 3) return; } InitScreenCoordinates(*(output_list[0])); InitScreenCoordinates(*(output_list[1])); for (size_t i = 0; i < output_list.size() - 2; i ++) { OutputVertex& vtx0 = *(output_list[0]); OutputVertex& vtx1 = *(output_list[i+1]); OutputVertex& vtx2 = *(output_list[i+2]); InitScreenCoordinates(vtx2); LOG_TRACE(Render_Software, "Triangle %lu/%lu (%lu buffer vertices) at position (%.3f, %.3f, %.3f, %.3f), " "(%.3f, %.3f, %.3f, %.3f), (%.3f, %.3f, %.3f, %.3f) and " "screen position (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f)", i,output_list.size(), buffer_vertices.size(), vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(), vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(), vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(), vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(), vtx2.pos.w.ToFloat32(), vtx0.screenpos.x.ToFloat32(), vtx0.screenpos.y.ToFloat32(), vtx0.screenpos.z.ToFloat32(), vtx1.screenpos.x.ToFloat32(), vtx1.screenpos.y.ToFloat32(), vtx1.screenpos.z.ToFloat32(), vtx2.screenpos.x.ToFloat32(), vtx2.screenpos.y.ToFloat32(), vtx2.screenpos.z.ToFloat32()); Rasterizer::ProcessTriangle(vtx0, vtx1, vtx2); } } } // namespace } // namespace