// Copyright (c) 2012- PPSSPP Project / Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #ifndef CORE_CORE_TIMING_H_ #define CORE_CORE_TIMING_H_ // This is a system to schedule events into the emulated machine's future. Time is measured // in main CPU clock cycles. // To schedule an event, you first have to register its type. This is where you pass in the // callback. You then schedule events using the type id you get back. // See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler. // The int cyclesLate that the callbacks get is how many cycles late it was. // So to schedule a new event on a regular basis: // inside callback: // ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") #include "common.h" class PointerWrap; extern int g_clock_rate_arm11; inline s64 msToCycles(int ms) { return g_clock_rate_arm11 / 1000 * ms; } inline s64 msToCycles(float ms) { return (s64)(g_clock_rate_arm11 * ms * (0.001f)); } inline s64 msToCycles(double ms) { return (s64)(g_clock_rate_arm11 * ms * (0.001)); } inline s64 usToCycles(float us) { return (s64)(g_clock_rate_arm11 * us * (0.000001f)); } inline s64 usToCycles(int us) { return (g_clock_rate_arm11 / 1000000 * (s64)us); } inline s64 usToCycles(s64 us) { return (g_clock_rate_arm11 / 1000000 * us); } inline s64 usToCycles(u64 us) { return (s64)(g_clock_rate_arm11 / 1000000 * us); } inline s64 cyclesToUs(s64 cycles) { return cycles / (g_clock_rate_arm11 / 1000000); } namespace CoreTiming { void Init(); void Shutdown(); typedef void (*TimedCallback)(u64 userdata, int cyclesLate); u64 GetTicks(); u64 GetIdleTicks(); // Returns the event_type identifier. int RegisterEvent(const char *name, TimedCallback callback); // For save states. void RestoreRegisterEvent(int event_type, const char *name, TimedCallback callback); void UnregisterAllEvents(); // userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from disk, // when we implement state saves. void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata=0); void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata=0); void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata=0); s64 UnscheduleEvent(int event_type, u64 userdata); s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata); void RemoveEvent(int event_type); void RemoveThreadsafeEvent(int event_type); void RemoveAllEvents(int event_type); bool IsScheduled(int event_type); void Advance(); void MoveEvents(); void ProcessFifoWaitEvents(); // Pretend that the main CPU has executed enough cycles to reach the next event. void Idle(int maxIdle = 0); // Clear all pending events. This should ONLY be done on exit or state load. void ClearPendingEvents(); void LogPendingEvents(); // Warning: not included in save states. void RegisterAdvanceCallback(void (*callback)(int cyclesExecuted)); std::string GetScheduledEventsSummary(); void DoState(PointerWrap &p); void SetClockFrequencyMHz(int cpuMhz); int GetClockFrequencyMHz(); extern int slicelength; }; // namespace #endif // CORE_CORE_TIMING_H_