// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/mem_map.h" #include "core/memory.h" #include "core/memory_setup.h" namespace Memory { enum class PageType { /// Page is unmapped and should cause an access error. Unmapped, /// Page is mapped to regular memory. This is the only type you can get pointers to. Memory, /// Page is mapped to a I/O region. Writing and reading to this page is handled by functions. Special, }; /** * A (reasonably) fast way of allowing switchable and remmapable process address spaces. It loosely * mimics the way a real CPU page table works, but instead is optimized for minimal decoding and * fetching requirements when acessing. In the usual case of an access to regular memory, it only * requires an indexed fetch and a check for NULL. */ struct PageTable { static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS); /** * Array of memory pointers backing each page. An entry can only be non-null if the * corresponding entry in the `attributes` array is of type `Memory`. */ std::array pointers; /** * Array of fine grained page attributes. If it is set to any value other than `Memory`, then * the corresponding entry in `pointer` MUST be set to null. */ std::array attributes; }; /// Singular page table used for the singleton process static PageTable main_page_table; /// Currently active page table static PageTable* current_page_table = &main_page_table; static void MapPages(u32 base, u32 size, u8* memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE); u32 end = base + size; while (base != end) { ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base); current_page_table->attributes[base] = type; current_page_table->pointers[base] = memory; base += 1; if (memory != nullptr) memory += PAGE_SIZE; } } void InitMemoryMap() { main_page_table.pointers.fill(nullptr); main_page_table.attributes.fill(PageType::Unmapped); } void MapMemoryRegion(VAddr base, u32 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); } void MapIoRegion(VAddr base, u32 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); } void UnmapRegion(VAddr base, u32 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); } template T Read(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return *reinterpret_cast(page_pointer + (vaddr & PAGE_MASK)); } PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr); return 0; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); case PageType::Special: LOG_ERROR(HW_Memory, "I/O reads aren't implemented yet @ %08X", vaddr); return 0; default: UNREACHABLE(); } } template void Write(const VAddr vaddr, const T data) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { *reinterpret_cast(page_pointer + (vaddr & PAGE_MASK)) = data; return; } PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr); return; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); case PageType::Special: LOG_ERROR(HW_Memory, "I/O writes aren't implemented yet @ %08X", vaddr); return; default: UNREACHABLE(); } } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return nullptr; } u8* GetPhysicalPointer(PAddr address) { return GetPointer(PhysicalToVirtualAddress(address)); } u8 Read8(const VAddr addr) { return Read(addr); } u16 Read16(const VAddr addr) { return Read(addr); } u32 Read32(const VAddr addr) { return Read(addr); } u64 Read64(const VAddr addr) { return Read(addr); } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } void WriteBlock(const VAddr addr, const u8* data, const size_t size) { u32 offset = 0; while (offset < (size & ~3)) { Write32(addr + offset, *(u32*)&data[offset]); offset += 4; } if (size & 2) { Write16(addr + offset, *(u16*)&data[offset]); offset += 2; } if (size & 1) Write8(addr + offset, data[offset]); } } // namespace