// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/mem_map.h" #include "core/hw/hw.h" #include "hle/config_mem.h" #include "hle/shared_page.h" namespace Memory { static std::map heap_map; static std::map heap_linear_map; PAddr VirtualToPhysicalAddress(const VAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return addr - VRAM_VADDR + VRAM_PADDR; } else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) { return addr - DSP_RAM_VADDR + DSP_RAM_PADDR; } else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) { return addr - IO_AREA_VADDR + IO_AREA_PADDR; } LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08x", addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } VAddr PhysicalToVirtualAddress(const PAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) { return addr - VRAM_PADDR + VRAM_VADDR; } else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) { return addr - FCRAM_PADDR + LINEAR_HEAP_VADDR; } else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) { return addr - DSP_RAM_PADDR + DSP_RAM_VADDR; } else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) { return addr - IO_AREA_PADDR + IO_AREA_VADDR; } LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08x", addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } template inline void Read(T &var, const VAddr vaddr) { // TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way. // Could just do a base-relative read, too.... TODO // Kernel memory command buffer if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) { var = *((const T*)&g_tls_mem[vaddr - TLS_AREA_VADDR]); // ExeFS:/.code is loaded here } else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) { var = *((const T*)&g_exefs_code[vaddr - PROCESS_IMAGE_VADDR]); // FCRAM - linear heap } else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) { var = *((const T*)&g_heap_linear[vaddr - LINEAR_HEAP_VADDR]); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { var = *((const T*)&g_heap[vaddr - HEAP_VADDR]); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]); // Config memory } else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) { ConfigMem::Read(var, vaddr); // Shared page } else if ((vaddr >= SHARED_PAGE_VADDR) && (vaddr < SHARED_PAGE_VADDR_END)) { SharedPage::Read(var, vaddr); // DSP memory } else if ((vaddr >= DSP_RAM_VADDR) && (vaddr < DSP_RAM_VADDR_END)) { var = *((const T*)&g_dsp_mem[vaddr - DSP_RAM_VADDR]); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { var = *((const T*)&g_vram[vaddr - VRAM_VADDR]); } else { LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr); } } template inline void Write(const VAddr vaddr, const T data) { // Kernel memory command buffer if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) { *(T*)&g_tls_mem[vaddr - TLS_AREA_VADDR] = data; // ExeFS:/.code is loaded here } else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) { *(T*)&g_exefs_code[vaddr - PROCESS_IMAGE_VADDR] = data; // FCRAM - linear heap } else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) { *(T*)&g_heap_linear[vaddr - LINEAR_HEAP_VADDR] = data; // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { *(T*)&g_heap[vaddr - HEAP_VADDR] = data; // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { *(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data; // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { *(T*)&g_vram[vaddr - VRAM_VADDR] = data; // DSP memory } else if ((vaddr >= DSP_RAM_VADDR) && (vaddr < DSP_RAM_VADDR_END)) { *(T*)&g_dsp_mem[vaddr - DSP_RAM_VADDR] = data; //} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) { // ASSERT_MSG(MEMMAP, false, "umimplemented write to Configuration Memory"); //} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) { // ASSERT_MSG(MEMMAP, false, "umimplemented write to shared page"); // Error out... } else { LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); } } u8 *GetPointer(const VAddr vaddr) { // Kernel memory command buffer if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) { return g_tls_mem + (vaddr - TLS_AREA_VADDR); // ExeFS:/.code is loaded here } else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) { return g_exefs_code + (vaddr - PROCESS_IMAGE_VADDR); // FCRAM - linear heap } else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) { return g_heap_linear + (vaddr - LINEAR_HEAP_VADDR); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { return g_heap + (vaddr - HEAP_VADDR); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { return g_vram + (vaddr - VRAM_VADDR); } else { LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return 0; } } u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_map.size() > 0) { const MemoryBlock last_block = heap_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } u32 MapBlock_HeapLinear(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = LINEAR_HEAP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_linear_map.size() > 0) { const MemoryBlock last_block = heap_linear_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_linear_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } void MemBlock_Init() { } void MemBlock_Shutdown() { heap_map.clear(); heap_linear_map.clear(); } u8 Read8(const VAddr addr) { u8 data = 0; Read(data, addr); return data; } u16 Read16(const VAddr addr) { u16_le data = 0; Read(data, addr); return (u16)data; } u32 Read32(const VAddr addr) { u32_le data = 0; Read(data, addr); return (u32)data; } u64 Read64(const VAddr addr) { u64_le data = 0; Read(data, addr); return (u64)data; } u32 Read8_ZX(const VAddr addr) { return (u32)Read8(addr); } u32 Read16_ZX(const VAddr addr) { return (u32)Read16(addr); } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } void WriteBlock(const VAddr addr, const u8* data, const size_t size) { u32 offset = 0; while (offset < (size & ~3)) { Write32(addr + offset, *(u32*)&data[offset]); offset += 4; } if (size & 2) { Write16(addr + offset, *(u16*)&data[offset]); offset += 2; } if (size & 1) Write8(addr + offset, data[offset]); } } // namespace