// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/mem_map.h" #include "core/hw/hw.h" #include "hle/config_mem.h" #include "hle/shared_page.h" namespace Memory { static std::map heap_map; static std::map heap_linear_map; /// Convert a physical address to virtual address VAddr PhysicalToVirtualAddress(const PAddr addr) { // Our memory interface read/write functions assume virtual addresses. Put any physical address // to virtual address translations here. This is quite hacky, but necessary until we implement // proper MMU emulation. // TODO: Screw it, I'll let bunnei figure out how to do this properly. if (addr == 0) { return 0; } else if ((addr >= VRAM_PADDR) && (addr < VRAM_PADDR_END)) { return addr - VRAM_PADDR + VRAM_VADDR; } else if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) { return addr - FCRAM_PADDR + HEAP_LINEAR_VADDR; } LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08x", addr); return addr; } /// Convert a physical address to virtual address PAddr VirtualToPhysicalAddress(const VAddr addr) { // Our memory interface read/write functions assume virtual addresses. Put any physical address // to virtual address translations here. This is quite hacky, but necessary until we implement // proper MMU emulation. // TODO: Screw it, I'll let bunnei figure out how to do this properly. if (addr == 0) { return 0; } else if ((addr >= VRAM_VADDR) && (addr < VRAM_VADDR_END)) { return addr - VRAM_VADDR + VRAM_PADDR; } else if ((addr >= HEAP_LINEAR_VADDR) && (addr < HEAP_LINEAR_VADDR_END)) { return addr - HEAP_LINEAR_VADDR + FCRAM_PADDR; } LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08x", addr); return addr; } template inline void Read(T &var, const VAddr vaddr) { // TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way. // Could just do a base-relative read, too.... TODO // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { var = *((const T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR]); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { var = *((const T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR]); // FCRAM - linear heap } else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) { var = *((const T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR]); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { var = *((const T*)&g_heap[vaddr - HEAP_VADDR]); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { var = *((const T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR]); // Config memory } else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) { ConfigMem::Read(var, vaddr); // Shared page } else if ((vaddr >= SHARED_PAGE_VADDR) && (vaddr < SHARED_PAGE_VADDR_END)) { SharedPage::Read(var, vaddr); // DSP memory } else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) { var = *((const T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR]); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { var = *((const T*)&g_vram[vaddr - VRAM_VADDR]); } else { LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr); } } template inline void Write(const VAddr vaddr, const T data) { // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { *(T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR] = data; // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { *(T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR] = data; // FCRAM - linear heap } else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) { *(T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR] = data; // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { *(T*)&g_heap[vaddr - HEAP_VADDR] = data; // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { *(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data; // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { *(T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR] = data; // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { *(T*)&g_vram[vaddr - VRAM_VADDR] = data; // DSP memory } else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) { *(T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR] = data; //} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) { // ASSERT_MSG(MEMMAP, false, "umimplemented write to Configuration Memory"); //} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) { // ASSERT_MSG(MEMMAP, false, "umimplemented write to shared page"); // Error out... } else { LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); } } u8 *GetPointer(const VAddr vaddr) { // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { return g_kernel_mem + (vaddr - KERNEL_MEMORY_VADDR); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { return g_exefs_code + (vaddr - EXEFS_CODE_VADDR); // FCRAM - linear heap } else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) { return g_heap_linear + (vaddr - HEAP_LINEAR_VADDR); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { return g_heap + (vaddr - HEAP_VADDR); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { return g_system_mem + (vaddr - SYSTEM_MEMORY_VADDR); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { return g_vram + (vaddr - VRAM_VADDR); } else { LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return 0; } } u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_map.size() > 0) { const MemoryBlock last_block = heap_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } u32 MapBlock_HeapLinear(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_LINEAR_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_linear_map.size() > 0) { const MemoryBlock last_block = heap_linear_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_linear_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } void MemBlock_Init() { } void MemBlock_Shutdown() { heap_map.clear(); heap_linear_map.clear(); } u8 Read8(const VAddr addr) { u8 data = 0; Read(data, addr); return data; } u16 Read16(const VAddr addr) { u16_le data = 0; Read(data, addr); return (u16)data; } u32 Read32(const VAddr addr) { u32_le data = 0; Read(data, addr); return (u32)data; } u64 Read64(const VAddr addr) { u64_le data = 0; Read(data, addr); return (u64)data; } u32 Read8_ZX(const VAddr addr) { return (u32)Read8(addr); } u32 Read16_ZX(const VAddr addr) { return (u32)Read16(addr); } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } void WriteBlock(const VAddr addr, const u8* data, const size_t size) { u32 offset = 0; while (offset < (size & ~3)) { Write32(addr + offset, *(u32*)&data[offset]); offset += 4; } if (size & 2) { Write16(addr + offset, *(u16*)&data[offset]); offset += 2; } if (size & 1) Write8(addr + offset, data[offset]); } } // namespace