// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "core/loader/ncch.h" #include "core/hle/kernel/kernel.h" #include "core/mem_map.h" //////////////////////////////////////////////////////////////////////////////////////////////////// // Loader namespace namespace Loader { static const int kMaxSections = 8; ///< Maximum number of sections (files) in an ExeFs static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes) /** * Get the decompressed size of an LZSS compressed ExeFS file * @param buffer Buffer of compressed file * @param size Size of compressed buffer * @return Size of decompressed buffer */ static u32 LZSS_GetDecompressedSize(u8* buffer, u32 size) { u32 offset_size = *(u32*)(buffer + size - 4); return offset_size + size; } /** * Decompress ExeFS file (compressed with LZSS) * @param compressed Compressed buffer * @param compressed_size Size of compressed buffer * @param decompressed Decompressed buffer * @param decompressed_size Size of decompressed buffer * @return True on success, otherwise false */ static bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) { u8* footer = compressed + compressed_size - 8; u32 buffer_top_and_bottom = *(u32*)footer; u32 out = decompressed_size; u32 index = compressed_size - ((buffer_top_and_bottom >> 24) & 0xFF); u32 stop_index = compressed_size - (buffer_top_and_bottom & 0xFFFFFF); memset(decompressed, 0, decompressed_size); memcpy(decompressed, compressed, compressed_size); while(index > stop_index) { u8 control = compressed[--index]; for(u32 i = 0; i < 8; i++) { if(index <= stop_index) break; if(index <= 0) break; if(out <= 0) break; if(control & 0x80) { // Check if compression is out of bounds if(index < 2) { return false; } index -= 2; u32 segment_offset = compressed[index] | (compressed[index + 1] << 8); u32 segment_size = ((segment_offset >> 12) & 15) + 3; segment_offset &= 0x0FFF; segment_offset += 2; // Check if compression is out of bounds if(out < segment_size) { return false; } for(u32 j = 0; j < segment_size; j++) { // Check if compression is out of bounds if(out + segment_offset >= decompressed_size) { return false; } u8 data = decompressed[out + segment_offset]; decompressed[--out] = data; } } else { // Check if compression is out of bounds if(out < 1) { return false; } decompressed[--out] = compressed[--index]; } control <<= 1; } } return true; } //////////////////////////////////////////////////////////////////////////////////////////////////// // AppLoader_NCCH class FileType AppLoader_NCCH::IdentifyType(FileUtil::IOFile& file) { u32 magic; file.Seek(0x100, SEEK_SET); if (1 != file.ReadArray(&magic, 1)) return FileType::Error; if (MakeMagic('N', 'C', 'S', 'D') == magic) return FileType::CCI; if (MakeMagic('N', 'C', 'C', 'H') == magic) return FileType::CXI; return FileType::Error; } ResultStatus AppLoader_NCCH::LoadExec() const { if (!is_loaded) return ResultStatus::ErrorNotLoaded; std::vector code; if (ResultStatus::Success == ReadCode(code)) { Memory::WriteBlock(entry_point, &code[0], code.size()); Kernel::LoadExec(entry_point); return ResultStatus::Success; } return ResultStatus::Error; } ResultStatus AppLoader_NCCH::LoadSectionExeFS(const char* name, std::vector& buffer) const { // Iterate through the ExeFs archive until we find the .code file... if (!file->IsOpen()) return ResultStatus::Error; LOG_DEBUG(Loader, "%d sections:", kMaxSections); for (int i = 0; i < kMaxSections; i++) { // Load the specified section... if (strcmp((const char*)exefs_header.section[i].name, name) == 0) { LOG_DEBUG(Loader, "%d - offset: 0x%08X, size: 0x%08X, name: %s", i, exefs_header.section[i].offset, exefs_header.section[i].size, exefs_header.section[i].name); s64 section_offset = (exefs_header.section[i].offset + exefs_offset + sizeof(ExeFs_Header)+ncch_offset); file->Seek(section_offset, SEEK_SET); // Section is compressed... if (i == 0 && is_compressed) { // Read compressed .code section... std::unique_ptr temp_buffer; try { temp_buffer.reset(new u8[exefs_header.section[i].size]); } catch (std::bad_alloc&) { return ResultStatus::ErrorMemoryAllocationFailed; } file->ReadBytes(&temp_buffer[0], exefs_header.section[i].size); // Decompress .code section... u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0], exefs_header.section[i].size); buffer.resize(decompressed_size); if (!LZSS_Decompress(&temp_buffer[0], exefs_header.section[i].size, &buffer[0], decompressed_size)) { return ResultStatus::ErrorInvalidFormat; } // Section is uncompressed... } else { buffer.resize(exefs_header.section[i].size); file->ReadBytes(&buffer[0], exefs_header.section[i].size); } return ResultStatus::Success; } } return ResultStatus::ErrorNotUsed; } ResultStatus AppLoader_NCCH::Load() { if (is_loaded) return ResultStatus::ErrorAlreadyLoaded; if (!file->IsOpen()) return ResultStatus::Error; // Reset read pointer in case this file has been read before. file->Seek(0, SEEK_SET); file->ReadBytes(&ncch_header, sizeof(NCCH_Header)); // Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)... if (MakeMagic('N', 'C', 'S', 'D') == ncch_header.magic) { LOG_WARNING(Loader, "Only loading the first (bootable) NCCH within the NCSD file!"); ncch_offset = 0x4000; file->Seek(ncch_offset, SEEK_SET); file->ReadBytes(&ncch_header, sizeof(NCCH_Header)); } // Verify we are loading the correct file type... if (MakeMagic('N', 'C', 'C', 'H') != ncch_header.magic) return ResultStatus::ErrorInvalidFormat; // Read ExHeader... file->ReadBytes(&exheader_header, sizeof(ExHeader_Header)); is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1; entry_point = exheader_header.codeset_info.text.address; LOG_INFO(Loader, "Name: %s", exheader_header.codeset_info.name); LOG_DEBUG(Loader, "Code compressed: %s", is_compressed ? "yes" : "no"); LOG_DEBUG(Loader, "Entry point: 0x%08X", entry_point); // Read ExeFS... exefs_offset = ncch_header.exefs_offset * kBlockSize; u32 exefs_size = ncch_header.exefs_size * kBlockSize; LOG_DEBUG(Loader, "ExeFS offset: 0x%08X", exefs_offset); LOG_DEBUG(Loader, "ExeFS size: 0x%08X", exefs_size); file->Seek(exefs_offset + ncch_offset, SEEK_SET); file->ReadBytes(&exefs_header, sizeof(ExeFs_Header)); LoadExec(); // Load the executable into memory for booting is_loaded = true; // Set state to loaded return ResultStatus::Success; } ResultStatus AppLoader_NCCH::ReadCode(std::vector& buffer) const { return LoadSectionExeFS(".code", buffer); } ResultStatus AppLoader_NCCH::ReadIcon(std::vector& buffer) const { return LoadSectionExeFS("icon", buffer); } ResultStatus AppLoader_NCCH::ReadBanner(std::vector& buffer) const { return LoadSectionExeFS("banner", buffer); } ResultStatus AppLoader_NCCH::ReadLogo(std::vector& buffer) const { return LoadSectionExeFS("logo", buffer); } ResultStatus AppLoader_NCCH::ReadRomFS(std::vector& buffer) const { if (!file->IsOpen()) return ResultStatus::Error; // Check if the NCCH has a RomFS... if (ncch_header.romfs_offset != 0 && ncch_header.romfs_size != 0) { u32 romfs_offset = ncch_offset + (ncch_header.romfs_offset * kBlockSize) + 0x1000; u32 romfs_size = (ncch_header.romfs_size * kBlockSize) - 0x1000; LOG_DEBUG(Loader, "RomFS offset: 0x%08X", romfs_offset); LOG_DEBUG(Loader, "RomFS size: 0x%08X", romfs_size); buffer.resize(romfs_size); file->Seek(romfs_offset, SEEK_SET); file->ReadBytes(&buffer[0], romfs_size); return ResultStatus::Success; } LOG_DEBUG(Loader, "NCCH has no RomFS"); return ResultStatus::ErrorNotUsed; } u64 AppLoader_NCCH::GetProgramId() const { return *reinterpret_cast(&ncch_header.program_id[0]); } } // namespace Loader