// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/logging/log.h" #include "core/file_sys/archive_romfs.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/service/fs/archive.h" #include "core/loader/elf.h" #include "core/loader/ncch.h" #include "core/memory.h" #include "3dsx.h" namespace Loader { /** * File layout: * - File header * - Code, rodata and data relocation table headers * - Code segment * - Rodata segment * - Loadable (non-BSS) part of the data segment * - Code relocation table * - Rodata relocation table * - Data relocation table * * Memory layout before relocations are applied: * [0..codeSegSize) -> code segment * [codeSegSize..rodataSegSize) -> rodata segment * [rodataSegSize..dataSegSize) -> data segment * * Memory layout after relocations are applied: well, however the loader sets it up :) * The entrypoint is always the start of the code segment. * The BSS section must be cleared manually by the application. */ enum THREEDSX_Error { ERROR_NONE = 0, ERROR_READ = 1, ERROR_FILE = 2, ERROR_ALLOC = 3 }; static const u32 RELOCBUFSIZE = 512; // File header #pragma pack(1) struct THREEDSX_Header { u32 magic; u16 header_size, reloc_hdr_size; u32 format_ver; u32 flags; // Sizes of the code, rodata and data segments + // size of the BSS section (uninitialized latter half of the data segment) u32 code_seg_size, rodata_seg_size, data_seg_size, bss_size; }; // Relocation header: all fields (even extra unknown fields) are guaranteed to be relocation counts. struct THREEDSX_RelocHdr { // # of absolute relocations (that is, fix address to post-relocation memory layout) u32 cross_segment_absolute; // # of cross-segment relative relocations (that is, 32bit signed offsets that need to be patched) u32 cross_segment_relative; // more? // Relocations are written in this order: // - Absolute relocations // - Relative relocations }; // Relocation entry: from the current pointer, skip X words and patch Y words struct THREEDSX_Reloc { u16 skip, patch; }; #pragma pack() struct THREEloadinfo { u8* seg_ptrs[3]; // code, rodata & data u32 seg_addrs[3]; u32 seg_sizes[3]; }; static u32 TranslateAddr(u32 addr, const THREEloadinfo *loadinfo, u32* offsets) { if (addr < offsets[0]) return loadinfo->seg_addrs[0] + addr; if (addr < offsets[1]) return loadinfo->seg_addrs[1] + addr - offsets[0]; return loadinfo->seg_addrs[2] + addr - offsets[1]; } static THREEDSX_Error Load3DSXFile(FileUtil::IOFile& file, u32 base_addr) { if (!file.IsOpen()) return ERROR_FILE; // Reset read pointer in case this file has been read before. file.Seek(0, SEEK_SET); THREEDSX_Header hdr; if (file.ReadBytes(&hdr, sizeof(hdr)) != sizeof(hdr)) return ERROR_READ; THREEloadinfo loadinfo; //loadinfo segments must be a multiple of 0x1000 loadinfo.seg_sizes[0] = (hdr.code_seg_size + 0xFFF) &~0xFFF; loadinfo.seg_sizes[1] = (hdr.rodata_seg_size + 0xFFF) &~0xFFF; loadinfo.seg_sizes[2] = (hdr.data_seg_size + 0xFFF) &~0xFFF; u32 offsets[2] = { loadinfo.seg_sizes[0], loadinfo.seg_sizes[0] + loadinfo.seg_sizes[1] }; u32 data_load_size = (hdr.data_seg_size - hdr.bss_size + 0xFFF) &~0xFFF; u32 bss_load_size = loadinfo.seg_sizes[2] - data_load_size; u32 n_reloc_tables = hdr.reloc_hdr_size / 4; std::vector all_mem(loadinfo.seg_sizes[0] + loadinfo.seg_sizes[1] + loadinfo.seg_sizes[2] + 3 * n_reloc_tables); loadinfo.seg_addrs[0] = base_addr; loadinfo.seg_addrs[1] = loadinfo.seg_addrs[0] + loadinfo.seg_sizes[0]; loadinfo.seg_addrs[2] = loadinfo.seg_addrs[1] + loadinfo.seg_sizes[1]; loadinfo.seg_ptrs[0] = &all_mem[0]; loadinfo.seg_ptrs[1] = loadinfo.seg_ptrs[0] + loadinfo.seg_sizes[0]; loadinfo.seg_ptrs[2] = loadinfo.seg_ptrs[1] + loadinfo.seg_sizes[1]; // Skip header for future compatibility file.Seek(hdr.header_size, SEEK_SET); // Read the relocation headers u32* relocs = (u32*)(loadinfo.seg_ptrs[2] + hdr.data_seg_size); for (unsigned current_segment : {0, 1, 2}) { size_t size = n_reloc_tables * 4; if (file.ReadBytes(&relocs[current_segment * n_reloc_tables], size) != size) return ERROR_READ; } // Read the segments if (file.ReadBytes(loadinfo.seg_ptrs[0], hdr.code_seg_size) != hdr.code_seg_size) return ERROR_READ; if (file.ReadBytes(loadinfo.seg_ptrs[1], hdr.rodata_seg_size) != hdr.rodata_seg_size) return ERROR_READ; if (file.ReadBytes(loadinfo.seg_ptrs[2], hdr.data_seg_size - hdr.bss_size) != hdr.data_seg_size - hdr.bss_size) return ERROR_READ; // BSS clear memset((char*)loadinfo.seg_ptrs[2] + hdr.data_seg_size - hdr.bss_size, 0, hdr.bss_size); // Relocate the segments for (unsigned current_segment : {0, 1, 2}) { for (unsigned current_segment_reloc_table = 0; current_segment_reloc_table < n_reloc_tables; current_segment_reloc_table++) { u32 n_relocs = relocs[current_segment * n_reloc_tables + current_segment_reloc_table]; if (current_segment_reloc_table >= 2) { // We are not using this table - ignore it because we don't know what it dose file.Seek(n_relocs*sizeof(THREEDSX_Reloc), SEEK_CUR); continue; } static THREEDSX_Reloc reloc_table[RELOCBUFSIZE]; u32* pos = (u32*)loadinfo.seg_ptrs[current_segment]; const u32* end_pos = pos + (loadinfo.seg_sizes[current_segment] / 4); while (n_relocs) { u32 remaining = std::min(RELOCBUFSIZE, n_relocs); n_relocs -= remaining; if (file.ReadBytes(reloc_table, remaining * sizeof(THREEDSX_Reloc)) != remaining * sizeof(THREEDSX_Reloc)) return ERROR_READ; for (unsigned current_inprogress = 0; current_inprogress < remaining && pos < end_pos; current_inprogress++) { const auto& table = reloc_table[current_inprogress]; LOG_TRACE(Loader, "(t=%d,skip=%u,patch=%u)\n", current_segment_reloc_table, (u32)table.skip, (u32)table.patch); pos += table.skip; s32 num_patches = table.patch; while (0 < num_patches && pos < end_pos) { u32 in_addr = (char*)pos - (char*)&all_mem[0]; u32 addr = TranslateAddr(*pos, &loadinfo, offsets); LOG_TRACE(Loader, "Patching %08X <-- rel(%08X,%d) (%08X)\n", base_addr + in_addr, addr, current_segment_reloc_table, *pos); switch (current_segment_reloc_table) { case 0: *pos = (addr); break; case 1: *pos = (addr - in_addr); break; default: break; //this should never happen } pos++; num_patches--; } } } } } // Write the data memcpy(Memory::GetPointer(base_addr), &all_mem[0], loadinfo.seg_sizes[0] + loadinfo.seg_sizes[1] + loadinfo.seg_sizes[2]); LOG_DEBUG(Loader, "CODE: %u pages\n", loadinfo.seg_sizes[0] / 0x1000); LOG_DEBUG(Loader, "RODATA: %u pages\n", loadinfo.seg_sizes[1] / 0x1000); LOG_DEBUG(Loader, "DATA: %u pages\n", data_load_size / 0x1000); LOG_DEBUG(Loader, "BSS: %u pages\n", bss_load_size / 0x1000); return ERROR_NONE; } FileType AppLoader_THREEDSX::IdentifyType(FileUtil::IOFile& file) { u32 magic; file.Seek(0, SEEK_SET); if (1 != file.ReadArray(&magic, 1)) return FileType::Error; if (MakeMagic('3', 'D', 'S', 'X') == magic) return FileType::THREEDSX; return FileType::Error; } ResultStatus AppLoader_THREEDSX::Load() { if (is_loaded) return ResultStatus::ErrorAlreadyLoaded; if (!file->IsOpen()) return ResultStatus::Error; Kernel::g_current_process = Kernel::Process::Create(filename, 0); Kernel::g_current_process->svc_access_mask.set(); Kernel::g_current_process->address_mappings = default_address_mappings; // Attach the default resource limit (APPLICATION) to the process Kernel::g_current_process->resource_limit = Kernel::ResourceLimit::GetForCategory(Kernel::ResourceLimitCategory::APPLICATION); Load3DSXFile(*file, Memory::PROCESS_IMAGE_VADDR); Kernel::g_current_process->Run(Memory::PROCESS_IMAGE_VADDR, 48, Kernel::DEFAULT_STACK_SIZE); is_loaded = true; return ResultStatus::Success; } } // namespace Loader