/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator. Copyright (C) 1994 Advanced RISC Machines Ltd. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "core/mem_map.h" #include "core/arm/skyeye_common/armdefs.h" #include "core/arm/skyeye_common/arm_regformat.h" // Unsigned sum of absolute difference u8 ARMul_UnsignedAbsoluteDifference(u8 left, u8 right) { if (left > right) return left - right; return right - left; } // Add with carry, indicates if a carry-out or signed overflow occurred. u32 AddWithCarry(u32 left, u32 right, u32 carry_in, bool* carry_out_occurred, bool* overflow_occurred) { u64 unsigned_sum = (u64)left + (u64)right + (u64)carry_in; s64 signed_sum = (s64)(s32)left + (s64)(s32)right + (s64)carry_in; u64 result = (unsigned_sum & 0xFFFFFFFF); if (carry_out_occurred) *carry_out_occurred = (result != unsigned_sum); if (overflow_occurred) *overflow_occurred = ((s64)(s32)result != signed_sum); return (u32)result; } // Compute whether an addition of A and B, giving RESULT, overflowed. bool AddOverflow(ARMword a, ARMword b, ARMword result) { return ((NEG(a) && NEG(b) && POS(result)) || (POS(a) && POS(b) && NEG(result))); } // Compute whether a subtraction of A and B, giving RESULT, overflowed. bool SubOverflow(ARMword a, ARMword b, ARMword result) { return ((NEG(a) && POS(b) && POS(result)) || (POS(a) && NEG(b) && NEG(result))); } // Returns true if the Q flag should be set as a result of overflow. bool ARMul_AddOverflowQ(ARMword a, ARMword b) { u32 result = a + b; if (((result ^ a) & (u32)0x80000000) && ((a ^ b) & (u32)0x80000000) == 0) return true; return false; } // 8-bit signed saturated addition u8 ARMul_SignedSaturatedAdd8(u8 left, u8 right) { u8 result = left + right; if (((result ^ left) & 0x80) && ((left ^ right) & 0x80) == 0) { if (left & 0x80) result = 0x80; else result = 0x7F; } return result; } // 8-bit signed saturated subtraction u8 ARMul_SignedSaturatedSub8(u8 left, u8 right) { u8 result = left - right; if (((result ^ left) & 0x80) && ((left ^ right) & 0x80) != 0) { if (left & 0x80) result = 0x80; else result = 0x7F; } return result; } // 16-bit signed saturated addition u16 ARMul_SignedSaturatedAdd16(u16 left, u16 right) { u16 result = left + right; if (((result ^ left) & 0x8000) && ((left ^ right) & 0x8000) == 0) { if (left & 0x8000) result = 0x8000; else result = 0x7FFF; } return result; } // 16-bit signed saturated subtraction u16 ARMul_SignedSaturatedSub16(u16 left, u16 right) { u16 result = left - right; if (((result ^ left) & 0x8000) && ((left ^ right) & 0x8000) != 0) { if (left & 0x8000) result = 0x8000; else result = 0x7FFF; } return result; } // 8-bit unsigned saturated addition u8 ARMul_UnsignedSaturatedAdd8(u8 left, u8 right) { u8 result = left + right; if (result < left) result = 0xFF; return result; } // 16-bit unsigned saturated addition u16 ARMul_UnsignedSaturatedAdd16(u16 left, u16 right) { u16 result = left + right; if (result < left) result = 0xFFFF; return result; } // 8-bit unsigned saturated subtraction u8 ARMul_UnsignedSaturatedSub8(u8 left, u8 right) { if (left <= right) return 0; return left - right; } // 16-bit unsigned saturated subtraction u16 ARMul_UnsignedSaturatedSub16(u16 left, u16 right) { if (left <= right) return 0; return left - right; } // Signed saturation. u32 ARMul_SignedSatQ(s32 value, u8 shift, bool* saturation_occurred) { const u32 max = (1 << shift) - 1; const s32 top = (value >> shift); if (top > 0) { *saturation_occurred = true; return max; } else if (top < -1) { *saturation_occurred = true; return ~max; } *saturation_occurred = false; return (u32)value; } // Unsigned saturation u32 ARMul_UnsignedSatQ(s32 value, u8 shift, bool* saturation_occurred) { const u32 max = (1 << shift) - 1; if (value < 0) { *saturation_occurred = true; return 0; } else if ((u32)value > max) { *saturation_occurred = true; return max; } *saturation_occurred = false; return (u32)value; } // Whether or not the given CPU is in big endian mode (E bit is set) bool InBigEndianMode(ARMul_State* cpu) { return (cpu->Cpsr & (1 << 9)) != 0; } // Whether or not the given CPU is in a mode other than user mode. bool InAPrivilegedMode(ARMul_State* cpu) { return (cpu->Mode != USER32MODE); } // Reads from the CP15 registers. Used with implementation of the MRC instruction. // Note that since the 3DS does not have the hypervisor extensions, these registers // are not implemented. u32 ReadCP15Register(ARMul_State* cpu, u32 crn, u32 opcode_1, u32 crm, u32 opcode_2) { // Unprivileged registers if (crn == 13 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 2) return cpu->CP15[CP15(CP15_THREAD_UPRW)]; // TODO: Whenever TLS is implemented, this should return // "cpu->CP15[CP15(CP15_THREAD_URO)];" // which contains the address of the 0x200-byte TLS if (opcode_2 == 3) return Memory::KERNEL_MEMORY_VADDR; } if (InAPrivilegedMode(cpu)) { if (crn == 0 && opcode_1 == 0) { if (crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_MAIN_ID)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_CACHE_TYPE)]; if (opcode_2 == 3) return cpu->CP15[CP15(CP15_TLB_TYPE)]; if (opcode_2 == 5) return cpu->CP15[CP15(CP15_CPU_ID)]; } else if (crm == 1) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_PROCESSOR_FEATURE_0)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_PROCESSOR_FEATURE_1)]; if (opcode_2 == 2) return cpu->CP15[CP15(CP15_DEBUG_FEATURE_0)]; if (opcode_2 == 4) return cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_0)]; if (opcode_2 == 5) return cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_1)]; if (opcode_2 == 6) return cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_2)]; if (opcode_2 == 7) return cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_3)]; } else if (crm == 2) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_ISA_FEATURE_0)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_ISA_FEATURE_1)]; if (opcode_2 == 2) return cpu->CP15[CP15(CP15_ISA_FEATURE_2)]; if (opcode_2 == 3) return cpu->CP15[CP15(CP15_ISA_FEATURE_3)]; if (opcode_2 == 4) return cpu->CP15[CP15(CP15_ISA_FEATURE_4)]; } } if (crn == 1 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_CONTROL)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_AUXILIARY_CONTROL)]; if (opcode_2 == 2) return cpu->CP15[CP15(CP15_COPROCESSOR_ACCESS_CONTROL)]; } if (crn == 2 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_0)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_1)]; if (opcode_2 == 2) return cpu->CP15[CP15(CP15_TRANSLATION_BASE_CONTROL)]; } if (crn == 3 && opcode_1 == 0 && crm == 0 && opcode_2 == 0) return cpu->CP15[CP15(CP15_DOMAIN_ACCESS_CONTROL)]; if (crn == 5 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_FAULT_STATUS)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_INSTR_FAULT_STATUS)]; } if (crn == 6 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_FAULT_ADDRESS)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_WFAR)]; } if (crn == 7 && opcode_1 == 0 && crm == 4 && opcode_2 == 0) return cpu->CP15[CP15(CP15_PHYS_ADDRESS)]; if (crn == 9 && opcode_1 == 0 && crm == 0 && opcode_2 == 0) return cpu->CP15[CP15(CP15_DATA_CACHE_LOCKDOWN)]; if (crn == 10 && opcode_1 == 0) { if (crm == 0 && opcode_2 == 0) return cpu->CP15[CP15(CP15_TLB_LOCKDOWN)]; if (crm == 2) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_PRIMARY_REGION_REMAP)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_NORMAL_REGION_REMAP)]; } } if (crn == 13 && crm == 0) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_PID)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_CONTEXT_ID)]; if (opcode_2 == 4) return cpu->CP15[CP15(CP15_THREAD_PRW)]; } if (crn == 15) { if (opcode_1 == 0 && crm == 12) { if (opcode_2 == 0) return cpu->CP15[CP15(CP15_PERFORMANCE_MONITOR_CONTROL)]; if (opcode_2 == 1) return cpu->CP15[CP15(CP15_CYCLE_COUNTER)]; if (opcode_2 == 2) return cpu->CP15[CP15(CP15_COUNT_0)]; if (opcode_2 == 3) return cpu->CP15[CP15(CP15_COUNT_1)]; } if (opcode_1 == 5 && opcode_2 == 2) { if (crm == 5) return cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_VIRT_ADDRESS)]; if (crm == 6) return cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_PHYS_ADDRESS)]; if (crm == 7) return cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_ATTRIBUTE)]; } if (opcode_1 == 7 && crm == 1 && opcode_2 == 0) return cpu->CP15[CP15(CP15_TLB_DEBUG_CONTROL)]; } } LOG_ERROR(Core_ARM11, "MRC CRn=%u, CRm=%u, OP1=%u OP2=%u is not implemented. Returning zero.", crn, crm, opcode_1, opcode_2); return 0; } // Write to the CP15 registers. Used with implementation of the MCR instruction. // Note that since the 3DS does not have the hypervisor extensions, these registers // are not implemented. void WriteCP15Register(ARMul_State* cpu, u32 value, u32 crn, u32 opcode_1, u32 crm, u32 opcode_2) { if (InAPrivilegedMode(cpu)) { if (crn == 1 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_CONTROL)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_AUXILIARY_CONTROL)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_COPROCESSOR_ACCESS_CONTROL)] = value; } else if (crn == 2 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_0)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_1)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_TRANSLATION_BASE_CONTROL)] = value; } else if (crn == 3 && opcode_1 == 0 && crm == 0 && opcode_2 == 0) { cpu->CP15[CP15(CP15_DOMAIN_ACCESS_CONTROL)] = value; } else if (crn == 5 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_FAULT_STATUS)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INSTR_FAULT_STATUS)] = value; } else if (crn == 6 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_FAULT_ADDRESS)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_WFAR)] = value; } else if (crn == 7 && opcode_1 == 0) { LOG_WARNING(Core_ARM11, "Cache operations are not fully implemented."); if (crm == 0 && opcode_2 == 4) { cpu->CP15[CP15(CP15_WAIT_FOR_INTERRUPT)] = value; } else if (crm == 4 && opcode_2 == 0) { // NOTE: Not entirely accurate. This should do permission checks. cpu->CP15[CP15(CP15_PHYS_ADDRESS)] = Memory::VirtualToPhysicalAddress(value); } else if (crm == 5) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_INVALIDATE_INSTR_CACHE)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INVALIDATE_INSTR_CACHE_USING_MVA)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_INVALIDATE_INSTR_CACHE_USING_INDEX)] = value; else if (opcode_2 == 6) cpu->CP15[CP15(CP15_FLUSH_BRANCH_TARGET_CACHE)] = value; else if (opcode_2 == 7) cpu->CP15[CP15(CP15_FLUSH_BRANCH_TARGET_CACHE_ENTRY)] = value; } else if (crm == 6) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_INVALIDATE_DATA_CACHE)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INVALIDATE_DATA_CACHE_LINE_USING_MVA)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_INVALIDATE_DATA_CACHE_LINE_USING_INDEX)] = value; } else if (crm == 7 && opcode_2 == 0) { cpu->CP15[CP15(CP15_INVALIDATE_DATA_AND_INSTR_CACHE)] = value; } else if (crm == 10) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_CLEAN_DATA_CACHE)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_CLEAN_DATA_CACHE_LINE_USING_MVA)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_CLEAN_DATA_CACHE_LINE_USING_INDEX)] = value; } else if (crm == 14) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_CLEAN_AND_INVALIDATE_DATA_CACHE)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_CLEAN_AND_INVALIDATE_DATA_CACHE_LINE_USING_MVA)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_CLEAN_AND_INVALIDATE_DATA_CACHE_LINE_USING_INDEX)] = value; } } else if (crn == 8 && opcode_1 == 0) { LOG_WARNING(Core_ARM11, "TLB operations not fully implemented."); if (crm == 5) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_INVALIDATE_ITLB)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INVALIDATE_ITLB_SINGLE_ENTRY)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_INVALIDATE_ITLB_ENTRY_ON_ASID_MATCH)] = value; else if (opcode_2 == 3) cpu->CP15[CP15(CP15_INVALIDATE_ITLB_ENTRY_ON_MVA)] = value; } else if (crm == 6) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_INVALIDATE_DTLB)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INVALIDATE_DTLB_SINGLE_ENTRY)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_INVALIDATE_DTLB_ENTRY_ON_ASID_MATCH)] = value; else if (opcode_2 == 3) cpu->CP15[CP15(CP15_INVALIDATE_DTLB_ENTRY_ON_MVA)] = value; } else if (crm == 7) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_INVALIDATE_UTLB)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_INVALIDATE_UTLB_SINGLE_ENTRY)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_INVALIDATE_UTLB_ENTRY_ON_ASID_MATCH)] = value; else if (opcode_2 == 3) cpu->CP15[CP15(CP15_INVALIDATE_UTLB_ENTRY_ON_MVA)] = value; } } else if (crn == 9 && opcode_1 == 0 && crm == 0 && opcode_2 == 0) { cpu->CP15[CP15(CP15_DATA_CACHE_LOCKDOWN)] = value; } else if (crn == 10 && opcode_1 == 0) { if (crm == 0 && opcode_2 == 0) { cpu->CP15[CP15(CP15_TLB_LOCKDOWN)] = value; } else if (crm == 2) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_PRIMARY_REGION_REMAP)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_NORMAL_REGION_REMAP)] = value; } } else if (crn == 13 && opcode_1 == 0 && crm == 0) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_PID)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_CONTEXT_ID)] = value; else if (opcode_2 == 3) cpu->CP15[CP15(CP15_THREAD_URO)] = value; else if (opcode_2 == 4) cpu->CP15[CP15(CP15_THREAD_PRW)] = value; } else if (crn == 15) { if (opcode_1 == 0 && crm == 12) { if (opcode_2 == 0) cpu->CP15[CP15(CP15_PERFORMANCE_MONITOR_CONTROL)] = value; else if (opcode_2 == 1) cpu->CP15[CP15(CP15_CYCLE_COUNTER)] = value; else if (opcode_2 == 2) cpu->CP15[CP15(CP15_COUNT_0)] = value; else if (opcode_2 == 3) cpu->CP15[CP15(CP15_COUNT_1)] = value; } else if (opcode_1 == 5) { if (crm == 4) { if (opcode_2 == 2) cpu->CP15[CP15(CP15_READ_MAIN_TLB_LOCKDOWN_ENTRY)] = value; else if (opcode_2 == 4) cpu->CP15[CP15(CP15_WRITE_MAIN_TLB_LOCKDOWN_ENTRY)] = value; } else if (crm == 5 && opcode_2 == 2) { cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_VIRT_ADDRESS)] = value; } else if (crm == 6 && opcode_2 == 2) { cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_PHYS_ADDRESS)] = value; } else if (crm == 7 && opcode_2 == 2) { cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_ATTRIBUTE)] = value; } } else if (opcode_1 == 7 && crm == 1 && opcode_2 == 0) { cpu->CP15[CP15(CP15_TLB_DEBUG_CONTROL)] = value; } } } // Unprivileged registers if (crn == 7 && opcode_1 == 0 && crm == 5 && opcode_2 == 4) { cpu->CP15[CP15(CP15_FLUSH_PREFETCH_BUFFER)] = value; } else if (crn == 7 && opcode_1 == 0 && crm == 10) { if (opcode_2 == 4) cpu->CP15[CP15(CP15_DATA_SYNC_BARRIER)] = value; else if (opcode_2 == 5) cpu->CP15[CP15(CP15_DATA_MEMORY_BARRIER)] = value; } else if (crn == 13 && opcode_1 == 0 && crm == 0 && opcode_2 == 2) { cpu->CP15[CP15(CP15_THREAD_UPRW)] = value; } }