From bc6989b0752b601762499fc1f3a0771980fd88f5 Mon Sep 17 00:00:00 2001 From: bunnei Date: Wed, 29 Oct 2014 22:25:54 -0400 Subject: ARM: Merge latest VFP fixes from 3dmoo team. --- src/core/arm/skyeye_common/vfp/vfpdouble.cpp | 2055 ++++++++++++++------------ 1 file changed, 1112 insertions(+), 943 deletions(-) (limited to 'src/core/arm/skyeye_common/vfp/vfpdouble.cpp') diff --git a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp index 13411ad8..765c1f6b 100644 --- a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp +++ b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp @@ -56,163 +56,291 @@ #include "core/arm/skyeye_common/vfp/asm_vfp.h" static struct vfp_double vfp_double_default_qnan = { - //.exponent = 2047, - //.sign = 0, - //.significand = VFP_DOUBLE_SIGNIFICAND_QNAN, + 2047, + 0, + VFP_DOUBLE_SIGNIFICAND_QNAN, }; static void vfp_double_dump(const char *str, struct vfp_double *d) { - pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", - str, d->sign != 0, d->exponent, d->significand); + pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", + str, d->sign != 0, d->exponent, d->significand); } static void vfp_double_normalise_denormal(struct vfp_double *vd) { - int bits = 31 - vfp_fls(vd->significand >> 32); - if (bits == 31) - bits = 63 - vfp_fls(vd->significand); + int bits = 31 - fls((ARMword)(vd->significand >> 32)); + if (bits == 31) + bits = 63 - fls((ARMword)vd->significand); - vfp_double_dump("normalise_denormal: in", vd); + vfp_double_dump("normalise_denormal: in", vd); - if (bits) { - vd->exponent -= bits - 1; - vd->significand <<= bits; - } + if (bits) { + vd->exponent -= bits - 1; + vd->significand <<= bits; + } - vfp_double_dump("normalise_denormal: out", vd); + vfp_double_dump("normalise_denormal: out", vd); } -u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) +u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) { - u64 significand, incr; - int exponent, shift, underflow; - u32 rmode; - - vfp_double_dump("pack: in", vd); - - /* - * Infinities and NaNs are a special case. - */ - if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) - goto pack; - - /* - * Special-case zero. - */ - if (vd->significand == 0) { - vd->exponent = 0; - goto pack; - } - - exponent = vd->exponent; - significand = vd->significand; - - shift = 32 - vfp_fls(significand >> 32); - if (shift == 32) - shift = 64 - vfp_fls(significand); - if (shift) { - exponent -= shift; - significand <<= shift; - } + u64 significand, incr; + int exponent, shift, underflow; + u32 rmode; + + vfp_double_dump("pack: in", vd); + + /* + * Infinities and NaNs are a special case. + */ + if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) + goto pack; + + /* + * Special-case zero. + */ + if (vd->significand == 0) { + vd->exponent = 0; + goto pack; + } + + exponent = vd->exponent; + significand = vd->significand; + + shift = 32 - fls((ARMword)(significand >> 32)); + if (shift == 32) + shift = 64 - fls((ARMword)significand); + if (shift) { + exponent -= shift; + significand <<= shift; + } #if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: normalised", vd); + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: normalised", vd); #endif - /* - * Tiny number? - */ - underflow = exponent < 0; - if (underflow) { - significand = vfp_shiftright64jamming(significand, -exponent); - exponent = 0; + /* + * Tiny number? + */ + underflow = exponent < 0; + if (underflow) { + significand = vfp_shiftright64jamming(significand, -exponent); + exponent = 0; #if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: tiny number", vd); + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: tiny number", vd); #endif - if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) - underflow = 0; - } - - /* - * Select rounding increment. - */ - incr = 0; - rmode = fpscr & FPSCR_RMODE_MASK; - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 1ULL << VFP_DOUBLE_LOW_BITS; - if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) - incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; - - pr_debug("VFP: rounding increment = 0x%08llx\n", incr); - - /* - * Is our rounding going to overflow? - */ - if ((significand + incr) < significand) { - exponent += 1; - significand = (significand >> 1) | (significand & 1); - incr >>= 1; + if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) + underflow = 0; + } + + /* + * Select rounding increment. + */ + incr = 0; + rmode = fpscr & FPSCR_RMODE_MASK; + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 1ULL << VFP_DOUBLE_LOW_BITS; + if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) + incr -= 1; + } + else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } + else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) + incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; + + pr_debug("VFP: rounding increment = 0x%08llx\n", incr); + + /* + * Is our rounding going to overflow? + */ + if ((significand + incr) < significand) { + exponent += 1; + significand = (significand >> 1) | (significand & 1); + incr >>= 1; #if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: overflow", vd); + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: overflow", vd); #endif - } - - /* - * If any of the low bits (which will be shifted out of the - * number) are non-zero, the result is inexact. - */ - if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) - exceptions |= FPSCR_IXC; - - /* - * Do our rounding. - */ - significand += incr; - - /* - * Infinity? - */ - if (exponent >= 2046) { - exceptions |= FPSCR_OFC | FPSCR_IXC; - if (incr == 0) { - vd->exponent = 2045; - vd->significand = 0x7fffffffffffffffULL; - } else { - vd->exponent = 2047; /* infinity */ - vd->significand = 0; - } - } else { - if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) - exponent = 0; - if (exponent || significand > 0x8000000000000000ULL) - underflow = 0; - if (underflow) - exceptions |= FPSCR_UFC; - vd->exponent = exponent; - vd->significand = significand >> 1; - } - + } + + /* + * If any of the low bits (which will be shifted out of the + * number) are non-zero, the result is inexact. + */ + if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) + exceptions |= FPSCR_IXC; + + /* + * Do our rounding. + */ + significand += incr; + + /* + * Infinity? + */ + if (exponent >= 2046) { + exceptions |= FPSCR_OFC | FPSCR_IXC; + if (incr == 0) { + vd->exponent = 2045; + vd->significand = 0x7fffffffffffffffULL; + } + else { + vd->exponent = 2047; /* infinity */ + vd->significand = 0; + } + } + else { + if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) + exponent = 0; + if (exponent || significand > 0x8000000000000000ULL) + underflow = 0; + if (underflow) + exceptions |= FPSCR_UFC; + vd->exponent = exponent; + vd->significand = significand >> 1; + } pack: - vfp_double_dump("pack: final", vd); - { - s64 d = vfp_double_pack(vd); - pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, - dd, d, exceptions); - vfp_put_double(state, d, dd); - } - return exceptions; + return 0; +} + +u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) +{ + u64 significand, incr; + int exponent, shift, underflow; + u32 rmode; + + vfp_double_dump("pack: in", vd); + + /* + * Infinities and NaNs are a special case. + */ + if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) + goto pack; + + /* + * Special-case zero. + */ + if (vd->significand == 0) { + vd->exponent = 0; + goto pack; + } + + exponent = vd->exponent; + significand = vd->significand; + + shift = 32 - fls((ARMword)(significand >> 32)); + if (shift == 32) + shift = 64 - fls((ARMword)significand); + if (shift) { + exponent -= shift; + significand <<= shift; + } + +#if 1 + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: normalised", vd); +#endif + + /* + * Tiny number? + */ + underflow = exponent < 0; + if (underflow) { + significand = vfp_shiftright64jamming(significand, -exponent); + exponent = 0; +#if 1 + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: tiny number", vd); +#endif + if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) + underflow = 0; + } + + /* + * Select rounding increment. + */ + incr = 0; + rmode = fpscr & FPSCR_RMODE_MASK; + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 1ULL << VFP_DOUBLE_LOW_BITS; + if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) + incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; + + pr_debug("VFP: rounding increment = 0x%08llx\n", incr); + + /* + * Is our rounding going to overflow? + */ + if ((significand + incr) < significand) { + exponent += 1; + significand = (significand >> 1) | (significand & 1); + incr >>= 1; +#if 1 + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: overflow", vd); +#endif + } + + /* + * If any of the low bits (which will be shifted out of the + * number) are non-zero, the result is inexact. + */ + if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) + exceptions |= FPSCR_IXC; + + /* + * Do our rounding. + */ + significand += incr; + + /* + * Infinity? + */ + if (exponent >= 2046) { + exceptions |= FPSCR_OFC | FPSCR_IXC; + if (incr == 0) { + vd->exponent = 2045; + vd->significand = 0x7fffffffffffffffULL; + } else { + vd->exponent = 2047; /* infinity */ + vd->significand = 0; + } + } else { + if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) + exponent = 0; + if (exponent || significand > 0x8000000000000000ULL) + underflow = 0; + if (underflow) + exceptions |= FPSCR_UFC; + vd->exponent = exponent; + vd->significand = significand >> 1; + } + +pack: + vfp_double_dump("pack: final", vd); + { + s64 d = vfp_double_pack(vd); + pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, + dd, d, exceptions); + vfp_put_double(state, d, dd); + } + return exceptions; } /* @@ -221,43 +349,43 @@ u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, */ static u32 vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, - struct vfp_double *vdm, u32 fpscr) + struct vfp_double *vdm, u32 fpscr) { - struct vfp_double *nan; - int tn, tm = 0; - - tn = vfp_double_type(vdn); - - if (vdm) - tm = vfp_double_type(vdm); - - if (fpscr & FPSCR_DEFAULT_NAN) - /* - * Default NaN mode - always returns a quiet NaN - */ - nan = &vfp_double_default_qnan; - else { - /* - * Contemporary mode - select the first signalling - * NAN, or if neither are signalling, the first - * quiet NAN. - */ - if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) - nan = vdn; - else - nan = vdm; - /* - * Make the NaN quiet. - */ - nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; - } - - *vdd = *nan; - - /* - * If one was a signalling NAN, raise invalid operation. - */ - return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; + struct vfp_double *nan; + int tn, tm = 0; + + tn = vfp_double_type(vdn); + + if (vdm) + tm = vfp_double_type(vdm); + + if (fpscr & FPSCR_DEFAULT_NAN) + /* + * Default NaN mode - always returns a quiet NaN + */ + nan = &vfp_double_default_qnan; + else { + /* + * Contemporary mode - select the first signalling + * NAN, or if neither are signalling, the first + * quiet NAN. + */ + if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) + nan = vdn; + else + nan = vdm; + /* + * Make the NaN quiet. + */ + nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; + } + + *vdd = *nan; + + /* + * If one was a signalling NAN, raise invalid operation. + */ + return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; } /* @@ -265,108 +393,108 @@ vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, */ static u32 vfp_double_fabs(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - vfp_put_double(state, vfp_double_packed_abs(vfp_get_double(state, dm)), dd); - return 0; + pr_debug("In %s\n", __FUNCTION__); + vfp_put_double(state, vfp_double_packed_abs(vfp_get_double(state, dm)), dd); + return 0; } static u32 vfp_double_fcpy(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - vfp_put_double(state, vfp_get_double(state, dm), dd); - return 0; + pr_debug("In %s\n", __FUNCTION__); + vfp_put_double(state, vfp_get_double(state, dm), dd); + return 0; } static u32 vfp_double_fneg(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - vfp_put_double(state, vfp_double_packed_negate(vfp_get_double(state, dm)), dd); - return 0; + pr_debug("In %s\n", __FUNCTION__); + vfp_put_double(state, vfp_double_packed_negate(vfp_get_double(state, dm)), dd); + return 0; } static u32 vfp_double_fsqrt(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - struct vfp_double vdm, vdd, *vdp; - int ret, tm; - - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - tm = vfp_double_type(&vdm); - if (tm & (VFP_NAN|VFP_INFINITY)) { - vdp = &vdd; - - if (tm & VFP_NAN) - ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); - else if (vdm.sign == 0) { - sqrt_copy: - vdp = &vdm; - ret = 0; - } else { - sqrt_invalid: - vdp = &vfp_double_default_qnan; - ret = FPSCR_IOC; - } - vfp_put_double(state, vfp_double_pack(vdp), dd); - return ret; - } - - /* - * sqrt(+/- 0) == +/- 0 - */ - if (tm & VFP_ZERO) - goto sqrt_copy; - - /* - * Normalise a denormalised number - */ - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - /* - * sqrt(<0) = invalid - */ - if (vdm.sign) - goto sqrt_invalid; - - vfp_double_dump("sqrt", &vdm); - - /* - * Estimate the square root. - */ - vdd.sign = 0; - vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; - vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; - - vfp_double_dump("sqrt estimate1", &vdd); - - vdm.significand >>= 1 + (vdm.exponent & 1); - vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); - - vfp_double_dump("sqrt estimate2", &vdd); - - /* - * And now adjust. - */ - if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { - if (vdd.significand < 2) { - vdd.significand = ~0ULL; - } else { - u64 termh, terml, remh, reml; - vdm.significand <<= 2; - mul64to128(&termh, &terml, vdd.significand, vdd.significand); - sub128(&remh, &reml, vdm.significand, 0, termh, terml); - while ((s64)remh < 0) { - vdd.significand -= 1; - shift64left(&termh, &terml, vdd.significand); - terml |= 1; - add128(&remh, &reml, remh, reml, termh, terml); - } - vdd.significand |= (remh | reml) != 0; - } - } - vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fsqrt"); + pr_debug("In %s\n", __FUNCTION__); + vfp_double vdm, vdd, *vdp; + int ret, tm; + + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + tm = vfp_double_type(&vdm); + if (tm & (VFP_NAN|VFP_INFINITY)) { + vdp = &vdd; + + if (tm & VFP_NAN) + ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); + else if (vdm.sign == 0) { +sqrt_copy: + vdp = &vdm; + ret = 0; + } else { +sqrt_invalid: + vdp = &vfp_double_default_qnan; + ret = FPSCR_IOC; + } + vfp_put_double(state, vfp_double_pack(vdp), dd); + return ret; + } + + /* + * sqrt(+/- 0) == +/- 0 + */ + if (tm & VFP_ZERO) + goto sqrt_copy; + + /* + * Normalise a denormalised number + */ + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdm); + + /* + * sqrt(<0) = invalid + */ + if (vdm.sign) + goto sqrt_invalid; + + vfp_double_dump("sqrt", &vdm); + + /* + * Estimate the square root. + */ + vdd.sign = 0; + vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; + vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; + + vfp_double_dump("sqrt estimate1", &vdd); + + vdm.significand >>= 1 + (vdm.exponent & 1); + vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); + + vfp_double_dump("sqrt estimate2", &vdd); + + /* + * And now adjust. + */ + if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { + if (vdd.significand < 2) { + vdd.significand = ~0ULL; + } else { + u64 termh, terml, remh, reml; + vdm.significand <<= 2; + mul64to128(&termh, &terml, vdd.significand, vdd.significand); + sub128(&remh, &reml, vdm.significand, 0, termh, terml); + while ((s64)remh < 0) { + vdd.significand -= 1; + shift64left(&termh, &terml, vdd.significand); + terml |= 1; + add128(&remh, &reml, remh, reml, termh, terml); + } + vdd.significand |= (remh | reml) != 0; + } + } + vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); + + return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fsqrt"); } /* @@ -377,319 +505,362 @@ static u32 vfp_double_fsqrt(ARMul_State* state, int dd, int unused, int dm, u32 */ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u32 fpscr) { - s64 d, m; - u32 ret = 0; - - pr_debug("In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); - m = vfp_get_double(state, dm); - if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { - ret |= FPSCR_C | FPSCR_V; - if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - d = vfp_get_double(state, dd); - if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { - ret |= FPSCR_C | FPSCR_V; - if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - if (ret == 0) { - //printf("In %s, d=%lld, m =%lld\n ", __FUNCTION__, d, m); - if (d == m || vfp_double_packed_abs(d | m) == 0) { - /* - * equal - */ - ret |= FPSCR_Z | FPSCR_C; - //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); - } else if (vfp_double_packed_sign(d ^ m)) { - /* - * different signs - */ - if (vfp_double_packed_sign(d)) - /* - * d is negative, so d < m - */ - ret |= FPSCR_N; - else - /* - * d is positive, so d > m - */ - ret |= FPSCR_C; - } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { - /* - * d < m - */ - ret |= FPSCR_N; - } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { - /* - * d > m - */ - ret |= FPSCR_C; - } - } - pr_debug("In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); - - return ret; + s64 d, m; + u32 ret = 0; + + pr_debug("In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); + m = vfp_get_double(state, dm); + if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { + ret |= FPSCR_C | FPSCR_V; + if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) + /* + * Signalling NaN, or signalling on quiet NaN + */ + ret |= FPSCR_IOC; + } + + d = vfp_get_double(state, dd); + if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { + ret |= FPSCR_C | FPSCR_V; + if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) + /* + * Signalling NaN, or signalling on quiet NaN + */ + ret |= FPSCR_IOC; + } + + if (ret == 0) { + //printf("In %s, d=%lld, m =%lld\n ", __FUNCTION__, d, m); + if (d == m || vfp_double_packed_abs(d | m) == 0) { + /* + * equal + */ + ret |= FPSCR_Z | FPSCR_C; + //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); + } else if (vfp_double_packed_sign(d ^ m)) { + /* + * different signs + */ + if (vfp_double_packed_sign(d)) + /* + * d is negative, so d < m + */ + ret |= FPSCR_N; + else + /* + * d is positive, so d > m + */ + ret |= FPSCR_C; + } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { + /* + * d < m + */ + ret |= FPSCR_N; + } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { + /* + * d > m + */ + ret |= FPSCR_C; + } + } + pr_debug("In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); + + return ret; } static u32 vfp_double_fcmp(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_compare(state, dd, 0, dm, fpscr); + pr_debug("In %s\n", __FUNCTION__); + return vfp_compare(state, dd, 0, dm, fpscr); } static u32 vfp_double_fcmpe(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_compare(state, dd, 1, dm, fpscr); + pr_debug("In %s\n", __FUNCTION__); + return vfp_compare(state, dd, 1, dm, fpscr); } static u32 vfp_double_fcmpz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_compare(state, dd, 0, VFP_REG_ZERO, fpscr); + pr_debug("In %s\n", __FUNCTION__); + return vfp_compare(state, dd, 0, VFP_REG_ZERO, fpscr); } static u32 vfp_double_fcmpez(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr); + pr_debug("In %s\n", __FUNCTION__); + return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr); +} + +u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr) //ichfly for internal use only +{ + struct vfp_single vsd; + int tm; + u32 exceptions = 0; + + pr_debug("In %s\n", __FUNCTION__); + + tm = vfp_double_type(dm); + + /* + * If we have a signalling NaN, signal invalid operation. + */ + if (tm == VFP_SNAN) + exceptions = FPSCR_IOC; + + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(dm); + + vsd.sign = dm->sign; + vsd.significand = vfp_hi64to32jamming(dm->significand); + + /* + * If we have an infinity or a NaN, the exponent must be 255 + */ + if (tm & (VFP_INFINITY | VFP_NAN)) { + vsd.exponent = 255; + if (tm == VFP_QNAN) + vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; + goto pack_nan; + } + else if (tm & VFP_ZERO) + vsd.exponent = 0; + else + vsd.exponent = dm->exponent - (1023 - 127); + + return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts"); + +pack_nan: + vfp_put_float(state, vfp_single_pack(&vsd), sd); + return exceptions; } static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - struct vfp_single vsd; - int tm; - u32 exceptions = 0; - - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - - tm = vfp_double_type(&vdm); - - /* - * If we have a signalling NaN, signal invalid operation. - */ - if (tm == VFP_SNAN) - exceptions = FPSCR_IOC; - - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - vsd.sign = vdm.sign; - vsd.significand = vfp_hi64to32jamming(vdm.significand); - - /* - * If we have an infinity or a NaN, the exponent must be 255 - */ - if (tm & (VFP_INFINITY|VFP_NAN)) { - vsd.exponent = 255; - if (tm == VFP_QNAN) - vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; - goto pack_nan; - } else if (tm & VFP_ZERO) - vsd.exponent = 0; - else - vsd.exponent = vdm.exponent - (1023 - 127); - - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts"); - - pack_nan: - vfp_put_float(state, vfp_single_pack(&vsd), sd); - return exceptions; + struct vfp_double vdm; + struct vfp_single vsd; + int tm; + u32 exceptions = 0; + + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + + tm = vfp_double_type(&vdm); + + /* + * If we have a signalling NaN, signal invalid operation. + */ + if (tm == VFP_SNAN) + exceptions = FPSCR_IOC; + + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdm); + + vsd.sign = vdm.sign; + vsd.significand = vfp_hi64to32jamming(vdm.significand); + + /* + * If we have an infinity or a NaN, the exponent must be 255 + */ + if (tm & (VFP_INFINITY|VFP_NAN)) { + vsd.exponent = 255; + if (tm == VFP_QNAN) + vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; + goto pack_nan; + } else if (tm & VFP_ZERO) + vsd.exponent = 0; + else + vsd.exponent = vdm.exponent - (1023 - 127); + + return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts"); + +pack_nan: + vfp_put_float(state, vfp_single_pack(&vsd), sd); + return exceptions; } static u32 vfp_double_fuito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 m = vfp_get_float(state, dm); + struct vfp_double vdm; + u32 m = vfp_get_float(state, dm); - pr_debug("In %s\n", __FUNCTION__); - vdm.sign = 0; - vdm.exponent = 1023 + 63 - 1; - vdm.significand = (u64)m; + pr_debug("In %s\n", __FUNCTION__); + vdm.sign = 0; + vdm.exponent = 1023 + 63 - 1; + vdm.significand = (u64)m; - return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fuito"); + return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fuito"); } static u32 vfp_double_fsito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 m = vfp_get_float(state, dm); + struct vfp_double vdm; + u32 m = vfp_get_float(state, dm); - pr_debug("In %s\n", __FUNCTION__); - vdm.sign = (m & 0x80000000) >> 16; - vdm.exponent = 1023 + 63 - 1; - vdm.significand = vdm.sign ? -m : m; + pr_debug("In %s\n", __FUNCTION__); + vdm.sign = (m & 0x80000000) >> 16; + vdm.exponent = 1023 + 63 - 1; + vdm.significand = vdm.sign ? -m : m; - return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fsito"); + return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fsito"); } static u32 vfp_double_ftoui(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - - /* - * Do we have a denormalised number? - */ - tm = vfp_double_type(&vdm); - if (tm & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) - vdm.sign = 0; - - if (vdm.exponent >= 1023 + 32) { - d = vdm.sign ? 0 : 0xffffffff; - exceptions = FPSCR_IOC; - } else if (vdm.exponent >= 1023 - 1) { - int shift = 1023 + 63 - vdm.exponent; - u64 rem, incr = 0; - - /* - * 2^0 <= m < 2^32-2^8 - */ - d = (vdm.significand << 1) >> shift; - rem = vdm.significand << (65 - shift); - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x8000000000000000ULL; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { - incr = ~0ULL; - } - - if ((rem + incr) < rem) { - if (d < 0xffffffff) - d += 1; - else - exceptions |= FPSCR_IOC; - } - - if (d && vdm.sign) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - } else { - d = 0; - if (vdm.exponent | vdm.significand) { - exceptions |= FPSCR_IXC; - if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) - d = 1; - else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { - d = 0; - exceptions |= FPSCR_IOC; - } - } - } - - pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); - - vfp_put_float(state, d, sd); - - return exceptions; + struct vfp_double vdm; + u32 d, exceptions = 0; + int rmode = fpscr & FPSCR_RMODE_MASK; + int tm; + + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + + /* + * Do we have a denormalised number? + */ + tm = vfp_double_type(&vdm); + if (tm & VFP_DENORMAL) + exceptions |= FPSCR_IDC; + + if (tm & VFP_NAN) + vdm.sign = 0; + + if (vdm.exponent >= 1023 + 32) { + d = vdm.sign ? 0 : 0xffffffff; + exceptions = FPSCR_IOC; + } else if (vdm.exponent >= 1023 - 1) { + int shift = 1023 + 63 - vdm.exponent; + u64 rem, incr = 0; + + /* + * 2^0 <= m < 2^32-2^8 + */ + d = (ARMword)((vdm.significand << 1) >> shift); + rem = vdm.significand << (65 - shift); + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 0x8000000000000000ULL; + if ((d & 1) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { + incr = ~0ULL; + } + + if ((rem + incr) < rem) { + if (d < 0xffffffff) + d += 1; + else + exceptions |= FPSCR_IOC; + } + + if (d && vdm.sign) { + d = 0; + exceptions |= FPSCR_IOC; + } else if (rem) + exceptions |= FPSCR_IXC; + } else { + d = 0; + if (vdm.exponent | vdm.significand) { + exceptions |= FPSCR_IXC; + if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) + d = 1; + else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { + d = 0; + exceptions |= FPSCR_IOC; + } + } + } + + pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); + + vfp_put_float(state, d, sd); + + return exceptions; } static u32 vfp_double_ftouiz(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_ftoui(state, sd, unused, dm, FPSCR_ROUND_TOZERO); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_ftoui(state, sd, unused, dm, FPSCR_ROUND_TOZERO); } static u32 vfp_double_ftosi(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - vfp_double_dump("VDM", &vdm); - - /* - * Do we have denormalised number? - */ - tm = vfp_double_type(&vdm); - if (tm & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (vdm.exponent >= 1023 + 32) { - d = 0x7fffffff; - if (vdm.sign) - d = ~d; - exceptions |= FPSCR_IOC; - } else if (vdm.exponent >= 1023 - 1) { - int shift = 1023 + 63 - vdm.exponent; /* 58 */ - u64 rem, incr = 0; - - d = (vdm.significand << 1) >> shift; - rem = vdm.significand << (65 - shift); - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x8000000000000000ULL; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { - incr = ~0ULL; - } - - if ((rem + incr) < rem && d < 0xffffffff) - d += 1; - if (d > 0x7fffffff + (vdm.sign != 0)) { - d = 0x7fffffff + (vdm.sign != 0); - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - - if (vdm.sign) - d = -d; - } else { - d = 0; - if (vdm.exponent | vdm.significand) { - exceptions |= FPSCR_IXC; - if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) - d = 1; - else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) - d = -1; - } - } - - pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); - - vfp_put_float(state, (s32)d, sd); - - return exceptions; + struct vfp_double vdm; + u32 d, exceptions = 0; + int rmode = fpscr & FPSCR_RMODE_MASK; + int tm; + + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + vfp_double_dump("VDM", &vdm); + + /* + * Do we have denormalised number? + */ + tm = vfp_double_type(&vdm); + if (tm & VFP_DENORMAL) + exceptions |= FPSCR_IDC; + + if (tm & VFP_NAN) { + d = 0; + exceptions |= FPSCR_IOC; + } else if (vdm.exponent >= 1023 + 32) { + d = 0x7fffffff; + if (vdm.sign) + d = ~d; + exceptions |= FPSCR_IOC; + } else if (vdm.exponent >= 1023 - 1) { + int shift = 1023 + 63 - vdm.exponent; /* 58 */ + u64 rem, incr = 0; + + d = (ARMword)((vdm.significand << 1) >> shift); + rem = vdm.significand << (65 - shift); + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 0x8000000000000000ULL; + if ((d & 1) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { + incr = ~0ULL; + } + + if ((rem + incr) < rem && d < 0xffffffff) + d += 1; + if (d > (0x7fffffff + (vdm.sign != 0))) { + d = (0x7fffffff + (vdm.sign != 0)); + exceptions |= FPSCR_IOC; + } else if (rem) + exceptions |= FPSCR_IXC; + + if (vdm.sign) + d = -d; + } else { + d = 0; + if (vdm.exponent | vdm.significand) { + exceptions |= FPSCR_IXC; + if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) + d = 1; + else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) + d = -1; + } + } + + pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); + + vfp_put_float(state, (s32)d, sd); + + return exceptions; } static u32 vfp_double_ftosiz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_ftosi(state, dd, unused, dm, FPSCR_ROUND_TOZERO); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_ftosi(state, dd, unused, dm, FPSCR_ROUND_TOZERO); } static struct op fops_ext[] = { @@ -728,197 +899,195 @@ static struct op fops_ext[] = { static u32 vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn, - struct vfp_double *vdm, u32 fpscr) + struct vfp_double *vdm, u32 fpscr) { - struct vfp_double *vdp; - u32 exceptions = 0; - int tn, tm; - - tn = vfp_double_type(vdn); - tm = vfp_double_type(vdm); - - if (tn & tm & VFP_INFINITY) { - /* - * Two infinities. Are they different signs? - */ - if (vdn->sign ^ vdm->sign) { - /* - * different signs -> invalid - */ - exceptions = FPSCR_IOC; - vdp = &vfp_double_default_qnan; - } else { - /* - * same signs -> valid - */ - vdp = vdn; - } - } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { - /* - * One infinity and one number -> infinity - */ - vdp = vdn; - } else { - /* - * 'n' is a NaN of some type - */ - return vfp_propagate_nan(vdd, vdn, vdm, fpscr); - } - *vdd = *vdp; - return exceptions; + struct vfp_double *vdp; + u32 exceptions = 0; + int tn, tm; + + tn = vfp_double_type(vdn); + tm = vfp_double_type(vdm); + + if (tn & tm & VFP_INFINITY) { + /* + * Two infinities. Are they different signs? + */ + if (vdn->sign ^ vdm->sign) { + /* + * different signs -> invalid + */ + exceptions = FPSCR_IOC; + vdp = &vfp_double_default_qnan; + } else { + /* + * same signs -> valid + */ + vdp = vdn; + } + } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { + /* + * One infinity and one number -> infinity + */ + vdp = vdn; + } else { + /* + * 'n' is a NaN of some type + */ + return vfp_propagate_nan(vdd, vdn, vdm, fpscr); + } + *vdd = *vdp; + return exceptions; } -static u32 -vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, - struct vfp_double *vdm, u32 fpscr) +u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,struct vfp_double *vdm, u32 fpscr) { - u32 exp_diff; - u64 m_sig; - - if (vdn->significand & (1ULL << 63) || - vdm->significand & (1ULL << 63)) { - pr_info("VFP: bad FP values\n"); - vfp_double_dump("VDN", vdn); - vfp_double_dump("VDM", vdm); - } - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vdn->exponent < vdm->exponent) { - struct vfp_double *t = vdn; - vdn = vdm; - vdm = t; - } - - /* - * Is 'n' an infinity or a NaN? Note that 'm' may be a number, - * infinity or a NaN here. - */ - if (vdn->exponent == 2047) - return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); - - /* - * We have two proper numbers, where 'vdn' is the larger magnitude. - * - * Copy 'n' to 'd' before doing the arithmetic. - */ - *vdd = *vdn; - - /* - * Align 'm' with the result. - */ - exp_diff = vdn->exponent - vdm->exponent; - m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); - - /* - * If the signs are different, we are really subtracting. - */ - if (vdn->sign ^ vdm->sign) { - m_sig = vdn->significand - m_sig; - if ((s64)m_sig < 0) { - vdd->sign = vfp_sign_negate(vdd->sign); - m_sig = -m_sig; - } else if (m_sig == 0) { - vdd->sign = (fpscr & FPSCR_RMODE_MASK) == - FPSCR_ROUND_MINUSINF ? 0x8000 : 0; - } - } else { - m_sig += vdn->significand; - } - vdd->significand = m_sig; - - return 0; + u32 exp_diff; + u64 m_sig; + + if (vdn->significand & (1ULL << 63) || + vdm->significand & (1ULL << 63)) { + pr_info("VFP: bad FP values in %s\n", __func__); + vfp_double_dump("VDN", vdn); + vfp_double_dump("VDM", vdm); + } + + /* + * Ensure that 'n' is the largest magnitude number. Note that + * if 'n' and 'm' have equal exponents, we do not swap them. + * This ensures that NaN propagation works correctly. + */ + if (vdn->exponent < vdm->exponent) { + struct vfp_double *t = vdn; + vdn = vdm; + vdm = t; + } + + /* + * Is 'n' an infinity or a NaN? Note that 'm' may be a number, + * infinity or a NaN here. + */ + if (vdn->exponent == 2047) + return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); + + /* + * We have two proper numbers, where 'vdn' is the larger magnitude. + * + * Copy 'n' to 'd' before doing the arithmetic. + */ + *vdd = *vdn; + + /* + * Align 'm' with the result. + */ + exp_diff = vdn->exponent - vdm->exponent; + m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); + + /* + * If the signs are different, we are really subtracting. + */ + if (vdn->sign ^ vdm->sign) { + m_sig = vdn->significand - m_sig; + if ((s64)m_sig < 0) { + vdd->sign = vfp_sign_negate(vdd->sign); + m_sig = -m_sig; + } else if (m_sig == 0) { + vdd->sign = (fpscr & FPSCR_RMODE_MASK) == + FPSCR_ROUND_MINUSINF ? 0x8000 : 0; + } + } else { + m_sig += vdn->significand; + } + vdd->significand = m_sig; + + return 0; } -static u32 +u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, - struct vfp_double *vdm, u32 fpscr) + struct vfp_double *vdm, u32 fpscr) { - vfp_double_dump("VDN", vdn); - vfp_double_dump("VDM", vdm); - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vdn->exponent < vdm->exponent) { - struct vfp_double *t = vdn; - vdn = vdm; - vdm = t; - pr_debug("VFP: swapping M <-> N\n"); - } - - vdd->sign = vdn->sign ^ vdm->sign; - - /* - * If 'n' is an infinity or NaN, handle it. 'm' may be anything. - */ - if (vdn->exponent == 2047) { - if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) - return vfp_propagate_nan(vdd, vdn, vdm, fpscr); - if ((vdm->exponent | vdm->significand) == 0) { - *vdd = vfp_double_default_qnan; - return FPSCR_IOC; - } - vdd->exponent = vdn->exponent; - vdd->significand = 0; - return 0; - } - - /* - * If 'm' is zero, the result is always zero. In this case, - * 'n' may be zero or a number, but it doesn't matter which. - */ - if ((vdm->exponent | vdm->significand) == 0) { - vdd->exponent = 0; - vdd->significand = 0; - return 0; - } - - /* - * We add 2 to the destination exponent for the same reason - * as the addition case - though this time we have +1 from - * each input operand. - */ - vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; - vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); - - vfp_double_dump("VDD", vdd); - return 0; + vfp_double_dump("VDN", vdn); + vfp_double_dump("VDM", vdm); + + /* + * Ensure that 'n' is the largest magnitude number. Note that + * if 'n' and 'm' have equal exponents, we do not swap them. + * This ensures that NaN propagation works correctly. + */ + if (vdn->exponent < vdm->exponent) { + struct vfp_double *t = vdn; + vdn = vdm; + vdm = t; + pr_debug("VFP: swapping M <-> N\n"); + } + + vdd->sign = vdn->sign ^ vdm->sign; + + /* + * If 'n' is an infinity or NaN, handle it. 'm' may be anything. + */ + if (vdn->exponent == 2047) { + if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) + return vfp_propagate_nan(vdd, vdn, vdm, fpscr); + if ((vdm->exponent | vdm->significand) == 0) { + *vdd = vfp_double_default_qnan; + return FPSCR_IOC; + } + vdd->exponent = vdn->exponent; + vdd->significand = 0; + return 0; + } + + /* + * If 'm' is zero, the result is always zero. In this case, + * 'n' may be zero or a number, but it doesn't matter which. + */ + if ((vdm->exponent | vdm->significand) == 0) { + vdd->exponent = 0; + vdd->significand = 0; + return 0; + } + + /* + * We add 2 to the destination exponent for the same reason + * as the addition case - though this time we have +1 from + * each input operand. + */ + vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; + vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); + + vfp_double_dump("VDD", vdd); + return 0; } #define NEG_MULTIPLY (1 << 0) #define NEG_SUBTRACT (1 << 1) static u32 -vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 fpscr, u32 negate, const char *func) +vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 fpscr, u32 negate, char *func) { - struct vfp_double vdd, vdp, vdn, vdm; - u32 exceptions; + struct vfp_double vdd, vdp, vdn, vdm; + u32 exceptions; - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + if (vdn.exponent == 0 && vdn.significand) + vfp_double_normalise_denormal(&vdn); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + if (vdm.exponent == 0 && vdm.significand) + vfp_double_normalise_denormal(&vdm); - exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); - if (negate & NEG_MULTIPLY) - vdp.sign = vfp_sign_negate(vdp.sign); + exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); + if (negate & NEG_MULTIPLY) + vdp.sign = vfp_sign_negate(vdp.sign); - vfp_double_unpack(&vdn, vfp_get_double(state, dd)); - if (negate & NEG_SUBTRACT) - vdn.sign = vfp_sign_negate(vdn.sign); + vfp_double_unpack(&vdn, vfp_get_double(state, dd)); + if (negate & NEG_SUBTRACT) + vdn.sign = vfp_sign_negate(vdn.sign); - exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); + exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, func); + return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, func); } /* @@ -930,8 +1099,8 @@ vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 f */ static u32 vfp_double_fmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, 0, "fmac"); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, 0, "fmac"); } /* @@ -939,8 +1108,8 @@ static u32 vfp_double_fmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr */ static u32 vfp_double_fnmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); } /* @@ -948,8 +1117,8 @@ static u32 vfp_double_fnmac(ARMul_State* state, int dd, int dn, int dm, u32 fpsc */ static u32 vfp_double_fmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); } /* @@ -957,8 +1126,8 @@ static u32 vfp_double_fmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr */ static u32 vfp_double_fnmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - pr_debug("In %s\n", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); + pr_debug("In %s\n", __FUNCTION__); + return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); } /* @@ -966,20 +1135,20 @@ static u32 vfp_double_fnmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpsc */ static u32 vfp_double_fmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions; + struct vfp_double vdd, vdn, vdm; + u32 exceptions; - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + if (vdn.exponent == 0 && vdn.significand) + vfp_double_normalise_denormal(&vdn); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + if (vdm.exponent == 0 && vdm.significand) + vfp_double_normalise_denormal(&vdm); - exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fmul"); + exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); + return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fmul"); } /* @@ -987,22 +1156,22 @@ static u32 vfp_double_fmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr */ static u32 vfp_double_fnmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions; + struct vfp_double vdd, vdn, vdm; + u32 exceptions; - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + if (vdn.exponent == 0 && vdn.significand) + vfp_double_normalise_denormal(&vdn); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + if (vdm.exponent == 0 && vdm.significand) + vfp_double_normalise_denormal(&vdm); - exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); - vdd.sign = vfp_sign_negate(vdd.sign); + exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); + vdd.sign = vfp_sign_negate(vdd.sign); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fnmul"); + return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fnmul"); } /* @@ -1010,21 +1179,21 @@ static u32 vfp_double_fnmul(ARMul_State* state, int dd, int dn, int dm, u32 fpsc */ static u32 vfp_double_fadd(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions; + struct vfp_double vdd, vdn, vdm; + u32 exceptions; - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + if (vdn.exponent == 0 && vdn.significand) + vfp_double_normalise_denormal(&vdn); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + if (vdm.exponent == 0 && vdm.significand) + vfp_double_normalise_denormal(&vdm); - exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); + exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fadd"); + return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fadd"); } /* @@ -1032,26 +1201,26 @@ static u32 vfp_double_fadd(ARMul_State* state, int dd, int dn, int dm, u32 fpscr */ static u32 vfp_double_fsub(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions; + struct vfp_double vdd, vdn, vdm; + u32 exceptions; - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + if (vdn.exponent == 0 && vdn.significand) + vfp_double_normalise_denormal(&vdn); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + if (vdm.exponent == 0 && vdm.significand) + vfp_double_normalise_denormal(&vdm); - /* - * Subtraction is like addition, but with a negated operand. - */ - vdm.sign = vfp_sign_negate(vdm.sign); + /* + * Subtraction is like addition, but with a negated operand. + */ + vdm.sign = vfp_sign_negate(vdm.sign); - exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); + exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fsub"); + return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fsub"); } /* @@ -1059,120 +1228,120 @@ static u32 vfp_double_fsub(ARMul_State* state, int dd, int dn, int dm, u32 fpscr */ static u32 vfp_double_fdiv(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - int tm, tn; - - pr_debug("In %s\n", __FUNCTION__); - vfp_double_unpack(&vdn, vfp_get_double(state, dn)); - vfp_double_unpack(&vdm, vfp_get_double(state, dm)); - - vdd.sign = vdn.sign ^ vdm.sign; - - tn = vfp_double_type(&vdn); - tm = vfp_double_type(&vdm); - - /* - * Is n a NAN? - */ - if (tn & VFP_NAN) - goto vdn_nan; - - /* - * Is m a NAN? - */ - if (tm & VFP_NAN) - goto vdm_nan; - - /* - * If n and m are infinity, the result is invalid - * If n and m are zero, the result is invalid - */ - if (tm & tn & (VFP_INFINITY|VFP_ZERO)) - goto invalid; - - /* - * If n is infinity, the result is infinity - */ - if (tn & VFP_INFINITY) - goto infinity; - - /* - * If m is zero, raise div0 exceptions - */ - if (tm & VFP_ZERO) - goto divzero; - - /* - * If m is infinity, or n is zero, the result is zero - */ - if (tm & VFP_INFINITY || tn & VFP_ZERO) - goto zero; - - if (tn & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdn); - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - /* - * Ok, we have two numbers, we can perform division. - */ - vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; - vdm.significand <<= 1; - if (vdm.significand <= (2 * vdn.significand)) { - vdn.significand >>= 1; - vdd.exponent++; - } - vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); - if ((vdd.significand & 0x1ff) <= 2) { - u64 termh, terml, remh, reml; - mul64to128(&termh, &terml, vdm.significand, vdd.significand); - sub128(&remh, &reml, vdn.significand, 0, termh, terml); - while ((s64)remh < 0) { - vdd.significand -= 1; - add128(&remh, &reml, remh, reml, 0, vdm.significand); - } - vdd.significand |= (reml != 0); - } - return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fdiv"); - - vdn_nan: - exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); - pack: - vfp_put_double(state, vfp_double_pack(&vdd), dd); - return exceptions; - - vdm_nan: - exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); - goto pack; - - zero: - vdd.exponent = 0; - vdd.significand = 0; - goto pack; - - divzero: - exceptions = FPSCR_DZC; - infinity: - vdd.exponent = 2047; - vdd.significand = 0; - goto pack; - - invalid: - vfp_put_double(state, vfp_double_pack(&vfp_double_default_qnan), dd); - return FPSCR_IOC; + struct vfp_double vdd, vdn, vdm; + u32 exceptions = 0; + int tm, tn; + + pr_debug("In %s\n", __FUNCTION__); + vfp_double_unpack(&vdn, vfp_get_double(state, dn)); + vfp_double_unpack(&vdm, vfp_get_double(state, dm)); + + vdd.sign = vdn.sign ^ vdm.sign; + + tn = vfp_double_type(&vdn); + tm = vfp_double_type(&vdm); + + /* + * Is n a NAN? + */ + if (tn & VFP_NAN) + goto vdn_nan; + + /* + * Is m a NAN? + */ + if (tm & VFP_NAN) + goto vdm_nan; + + /* + * If n and m are infinity, the result is invalid + * If n and m are zero, the result is invalid + */ + if (tm & tn & (VFP_INFINITY|VFP_ZERO)) + goto invalid; + + /* + * If n is infinity, the result is infinity + */ + if (tn & VFP_INFINITY) + goto infinity; + + /* + * If m is zero, raise div0 exceptions + */ + if (tm & VFP_ZERO) + goto divzero; + + /* + * If m is infinity, or n is zero, the result is zero + */ + if (tm & VFP_INFINITY || tn & VFP_ZERO) + goto zero; + + if (tn & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdn); + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdm); + + /* + * Ok, we have two numbers, we can perform division. + */ + vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; + vdm.significand <<= 1; + if (vdm.significand <= (2 * vdn.significand)) { + vdn.significand >>= 1; + vdd.exponent++; + } + vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); + if ((vdd.significand & 0x1ff) <= 2) { + u64 termh, terml, remh, reml; + mul64to128(&termh, &terml, vdm.significand, vdd.significand); + sub128(&remh, &reml, vdn.significand, 0, termh, terml); + while ((s64)remh < 0) { + vdd.significand -= 1; + add128(&remh, &reml, remh, reml, 0, vdm.significand); + } + vdd.significand |= (reml != 0); + } + return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fdiv"); + +vdn_nan: + exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); +pack: + vfp_put_double(state, vfp_double_pack(&vdd), dd); + return exceptions; + +vdm_nan: + exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); + goto pack; + +zero: + vdd.exponent = 0; + vdd.significand = 0; + goto pack; + +divzero: + exceptions = FPSCR_DZC; +infinity: + vdd.exponent = 2047; + vdd.significand = 0; + goto pack; + +invalid: + vfp_put_double(state, vfp_double_pack(&vfp_double_default_qnan), dd); + return FPSCR_IOC; } static struct op fops[] = { - { vfp_double_fmac, 0 }, - { vfp_double_fmsc, 0 }, - { vfp_double_fmul, 0 }, - { vfp_double_fadd, 0 }, - { vfp_double_fnmac, 0 }, - { vfp_double_fnmsc, 0 }, - { vfp_double_fnmul, 0 }, - { vfp_double_fsub, 0 }, - { vfp_double_fdiv, 0 }, + { vfp_double_fmac, 0 }, + { vfp_double_fmsc, 0 }, + { vfp_double_fmul, 0 }, + { vfp_double_fadd, 0 }, + { vfp_double_fnmac, 0 }, + { vfp_double_fnmsc, 0 }, + { vfp_double_fnmul, 0 }, + { vfp_double_fsub, 0 }, + { vfp_double_fdiv, 0 }, }; #define FREG_BANK(x) ((x) & 0x0c) @@ -1180,84 +1349,84 @@ static struct op fops[] = { u32 vfp_double_cpdo(ARMul_State* state, u32 inst, u32 fpscr) { - u32 op = inst & FOP_MASK; - u32 exceptions = 0; - unsigned int dest; - unsigned int dn = vfp_get_dn(inst); - unsigned int dm; - unsigned int vecitr, veclen, vecstride; - struct op *fop; - - pr_debug("In %s\n", __FUNCTION__); - vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)); - - fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; - - /* - * fcvtds takes an sN register number as destination, not dN. - * It also always operates on scalars. - */ - if (fop->flags & OP_SD) - dest = vfp_get_sd(inst); - else - dest = vfp_get_dd(inst); - - /* - * f[us]ito takes a sN operand, not a dN operand. - */ - if (fop->flags & OP_SM) - dm = vfp_get_sm(inst); - else - dm = vfp_get_dm(inst); - - /* - * If destination bank is zero, vector length is always '1'. - * ARM DDI0100F C5.1.3, C5.3.2. - */ - if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0)) - veclen = 0; - else - veclen = fpscr & FPSCR_LENGTH_MASK; - - pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, - (veclen >> FPSCR_LENGTH_BIT) + 1); - - if (!fop->fn) { - printf("VFP: could not find double op %d\n", FEXT_TO_IDX(inst)); - goto invalid; - } - - for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { - u32 except; - char type; - - type = fop->flags & OP_SD ? 's' : 'd'; - if (op == FOP_EXT) - pr_debug("VFP: itr%d (%c%u) = op[%u] (d%u)\n", - vecitr >> FPSCR_LENGTH_BIT, - type, dest, dn, dm); - else - pr_debug("VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)\n", - vecitr >> FPSCR_LENGTH_BIT, - type, dest, dn, FOP_TO_IDX(op), dm); - - except = fop->fn(state, dest, dn, dm, fpscr); - pr_debug("VFP: itr%d: exceptions=%08x\n", - vecitr >> FPSCR_LENGTH_BIT, except); - - exceptions |= except; - - /* - * CHECK: It appears to be undefined whether we stop when - * we encounter an exception. We continue. - */ - dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3); - dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3); - if (FREG_BANK(dm) != 0) - dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3); - } - return exceptions; - - invalid: - return ~0; + u32 op = inst & FOP_MASK; + u32 exceptions = 0; + unsigned int dest; + unsigned int dn = vfp_get_dn(inst); + unsigned int dm; + unsigned int vecitr, veclen, vecstride; + struct op *fop; + + pr_debug("In %s\n", __FUNCTION__); + vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)); + + fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; + + /* + * fcvtds takes an sN register number as destination, not dN. + * It also always operates on scalars. + */ + if (fop->flags & OP_SD) + dest = vfp_get_sd(inst); + else + dest = vfp_get_dd(inst); + + /* + * f[us]ito takes a sN operand, not a dN operand. + */ + if (fop->flags & OP_SM) + dm = vfp_get_sm(inst); + else + dm = vfp_get_dm(inst); + + /* + * If destination bank is zero, vector length is always '1'. + * ARM DDI0100F C5.1.3, C5.3.2. + */ + if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0)) + veclen = 0; + else + veclen = fpscr & FPSCR_LENGTH_MASK; + + pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, + (veclen >> FPSCR_LENGTH_BIT) + 1); + + if (!fop->fn) { + printf("VFP: could not find double op %d\n", FEXT_TO_IDX(inst)); + goto invalid; + } + + for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { + u32 except; + char type; + + type = fop->flags & OP_SD ? 's' : 'd'; + if (op == FOP_EXT) + pr_debug("VFP: itr%d (%c%u) = op[%u] (d%u)\n", + vecitr >> FPSCR_LENGTH_BIT, + type, dest, dn, dm); + else + pr_debug("VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)\n", + vecitr >> FPSCR_LENGTH_BIT, + type, dest, dn, FOP_TO_IDX(op), dm); + + except = fop->fn(state, dest, dn, dm, fpscr); + pr_debug("VFP: itr%d: exceptions=%08x\n", + vecitr >> FPSCR_LENGTH_BIT, except); + + exceptions |= except; + + /* + * CHECK: It appears to be undefined whether we stop when + * we encounter an exception. We continue. + */ + dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3); + dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3); + if (FREG_BANK(dm) != 0) + dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3); + } + return exceptions; + +invalid: + return ~0; } -- cgit v1.2.3