// Copyright 2007 Alan Donovan. All rights reserved. // // Author: Alan Donovan // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // zip.cc -- .zip (.jar) file reading/writing routines. // // See README.txt for details. // // See http://www.pkware.com/documents/casestudies/APPNOTE.TXT // for definition of PKZIP file format. #define _FILE_OFFSET_BITS 64 // Support zip files larger than 2GB #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include #define LOCAL_FILE_HEADER_SIGNATURE 0x04034b50 #define CENTRAL_FILE_HEADER_SIGNATURE 0x02014b50 #define END_OF_CENTRAL_DIR_SIGNATURE 0x06054b50 #define DATA_DESCRIPTOR_SIGNATURE 0x08074b50 // version to extract: 1.0 - default value from APPNOTE.TXT. // Output JAR files contain no extra ZIP features, so this is enough. #define ZIP_VERSION_TO_EXTRACT 10 #define COMPRESSION_METHOD_STORED 0 // no compression #define COMPRESSION_METHOD_DEFLATED 8 #define GENERAL_PURPOSE_BIT_FLAG_COMPRESSED (1 << 3) #define GENERAL_PURPOSE_BIT_FLAG_UTF8_ENCODED (1 << 11) #define GENERAL_PURPOSE_BIT_FLAG_SUPPORTED \ (GENERAL_PURPOSE_BIT_FLAG_COMPRESSED | GENERAL_PURPOSE_BIT_FLAG_UTF8_ENCODED) #define STRINGIFY(x) #x #define SYSCALL(expr) do { \ if ((expr) < 0) { \ perror(STRINGIFY(expr)); \ abort(); \ } \ } while (0) namespace devtools_ijar { bool verbose = false; // In the absence of ZIP64 support, zip files are limited to 4GB. // http://www.info-zip.org/FAQ.html#limits static const u8 kMaximumOutputSize = std::numeric_limits::max(); static bool ProcessCentralDirEntry(const u1 *&p, size_t *compressed_size, size_t *uncompressed_size, bool *is_class_file); struct JarStripper { JarStripper(const u1 * const zipdata_in, u1 * const zipdata_out, size_t in_length, const u1 * central_dir) : zipdata_in_(zipdata_in), zipdata_out_(zipdata_out), zipdata_in_mapped_(zipdata_in), zipdata_out_mapped_(zipdata_out), central_dir_(central_dir), in_length_(in_length), p(zipdata_in), q(zipdata_out), central_dir_current_(central_dir) { uncompressed_data_allocated_ = INITIAL_BUFFER_SIZE; uncompressed_data_ = reinterpret_cast(malloc(uncompressed_data_allocated_)); } ~JarStripper() { free(uncompressed_data_); } // Scan through the input .jar file, stripping each class file and // emitting it to the output .jar file. Returns the size of the // output. off_t Run(); private: struct LocalFileEntry { // Start of the local header (in the output buffer). size_t local_header_offset; size_t uncompressed_length; // Start/length of the file_name in the local header. u1 *file_name; u2 file_name_length; // Start/length of the extra_field in the local header. const u1 *extra_field; u2 extra_field_length; }; // Buffer size is initially INITIAL_BUFFER_SIZE. It doubles in size every // time it is found too small, until it reaches MAX_BUFFER_SIZE. If that is // not enough, we bail out. We only decompress class files, so they should // be smaller than 64K anyway, but we give a little leeway. static const size_t INITIAL_BUFFER_SIZE = 256 * 1024; // 256K static const size_t MAX_BUFFER_SIZE = 16 * 1024 * 1024; static const size_t MAX_MAPPED_REGION = 32 * 1024 * 1024; const u1 * const zipdata_in_; // start of input file mmap u1 * const zipdata_out_; // start of output file mmap const u1 * zipdata_in_mapped_; // start of still mapped region u1 * zipdata_out_mapped_; // start of still mapped region const u1 * const central_dir_; // central directory in input file size_t in_length_; // size of the input file const u1 *p; // input cursor u1 *q; // output cursor const u1* central_dir_current_; // central dir input cursor std::vector entries_; // These metadata fields are the fields of the ZIP header of the file being // processed. u2 extract_version_; u2 general_purpose_bit_flag_; u2 compression_method_; u4 uncompressed_size_; u4 compressed_size_; u2 file_name_length_; u2 extra_field_length_; const u1 *file_name_; const u1 *extra_field_; // Administration of memory reserved for decompressed data. We use the same // buffer for each file to avoid some malloc()/free() calls and free the // memory only in the dtor. C-style memory management is used so that we // can call realloc. u1 *uncompressed_data_; size_t uncompressed_data_allocated_; // Read one entry from input zip file, and emit corresponding entry // in output zip file. void ProcessLocalFileEntry(size_t compressed_size, size_t uncompressed_size, bool is_class_file); // Add a zero-byte file called "dummy" to the output zip file. void AddDummyEntry(); // Write the ZIP central directory structure for each local file // entry in "entries". void WriteCentralDirectory(); // Check that at least n bytes remain in the input file, otherwise // abort with an error message. "state" is the name of the field // we're about to read, for diagnostics. void EnsureRemaining(size_t n, const char *state) { size_t in_offset = p - zipdata_in_; size_t remaining = in_length_ - in_offset; if (n > remaining) { fprintf(stderr, "Premature end of file (at offset %zd, state=%s); " "expected %zd more bytes but found %zd.\n", in_offset, state, n, remaining); abort(); } } // Returns the offset of the pointer relative to the start of the // output zip file. size_t Offset(const u1 *const x) { return x - zipdata_out_; } // Uncompress a file from the archive using zlib. The pointer returned // is owned by JarStripper, so it must not be freed. Advances the input cursor // to the first byte after the compressed data. u1* UncompressFile(); // Write ZIP file header in the output. Since the compressed size is not // known in advance, it must be recorded later. This method returns a pointer // to "compressed size" in the file header that should be passed to // WriteFileSizeInLocalFileHeader() later. u1* WriteLocalFileHeader(); // Fill in the "compressed size" and "uncompressed size" fields in a local // file header previously written by WriteLocalFileHeader(). void WriteFileSizeInLocalFileHeader(u1 *compressed_size_ptr, size_t out_length); // Process raw class data. Expects that metadata fields are filled out, i.e. // extract_version_, general_purpose_bit_flag and their kin. void ProcessRawClassData(const u1 *classdata_in); // Process a compressed file as a class void ProcessCompressedFile(); // Skip a compressed file void SkipCompressedFile(); // Process an uncompressed file void ProcessUncompressedFile(); // Skip an uncompressed file void SkipUncompressedFile(); }; off_t JarStripper::Run() { // Process all the entries in the central directory. Also make sure that the // content pointer is in sync. for (int i = 0; true; i++) { size_t compressed, uncompressed; bool is_class_file; if (!ProcessCentralDirEntry(central_dir_current_, &compressed, &uncompressed, &is_class_file)) { break; } EnsureRemaining(4, "signature"); u4 signature = get_u4le(p); if (signature == LOCAL_FILE_HEADER_SIGNATURE) { ProcessLocalFileEntry(compressed, uncompressed, is_class_file); } else { fprintf(stderr, "local file header signature for file %d not found\n", i); abort(); } } // Add dummy file, since javac doesn't like truly empty jars. if (entries_.empty()) AddDummyEntry(); WriteCentralDirectory(); return Offset(q); // = output length } void JarStripper::AddDummyEntry() { const u1* file_name = (const u1*) "dummy"; size_t file_name_length = strlen("dummy"); LocalFileEntry *entry = new LocalFileEntry; entry->local_header_offset = Offset(q); // Output the ZIP local_file_header: put_u4le(q, LOCAL_FILE_HEADER_SIGNATURE); put_u2le(q, 10); // extract_version put_u2le(q, 0); // general_purpose_bit_flag put_u2le(q, 0); // compression_method put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, 0); // crc32 put_u4le(q, 0); // compressed_size put_u4le(q, 0); // uncompressed_size put_u2le(q, file_name_length); put_u2le(q, 0); // extra_field_length put_n(q, file_name, file_name_length); entry->file_name_length = file_name_length; entry->extra_field_length = 0; entry->extra_field = (const u1*) ""; entry->file_name = (u1*) strdup((const char *) file_name); entries_.push_back(entry); } void JarStripper::ProcessLocalFileEntry( size_t compressed_size, size_t uncompressed_size, bool is_class_file) { EnsureRemaining(26, "extract_version"); extract_version_ = get_u2le(p); general_purpose_bit_flag_ = get_u2le(p); if ((general_purpose_bit_flag_ & ~GENERAL_PURPOSE_BIT_FLAG_SUPPORTED) != 0) { fprintf(stderr, "Unsupported value (0x%04x) in general purpose bit flag.\n", general_purpose_bit_flag_); abort(); } compression_method_ = get_u2le(p); if (compression_method_ != COMPRESSION_METHOD_DEFLATED && compression_method_ != COMPRESSION_METHOD_STORED) { fprintf(stderr, "Unsupported compression method (%d).\n", compression_method_); abort(); } // skip over: last_mod_file_time, last_mod_file_date, crc32 p += 2 + 2 + 4; compressed_size_ = get_u4le(p); uncompressed_size_ = get_u4le(p); file_name_length_ = get_u2le(p); extra_field_length_ = get_u2le(p); EnsureRemaining(file_name_length_, "file_name"); file_name_ = p; p += file_name_length_; EnsureRemaining(extra_field_length_, "extra_field"); extra_field_ = p; p += extra_field_length_; bool is_compressed = compression_method_ == COMPRESSION_METHOD_DEFLATED; // If the zip is compressed, compressed and uncompressed size members are // zero in the local file header. If not, check that they are the same as the // lengths from the central directory, otherwise, just believe the central // directory if (compressed_size_ == 0) { compressed_size_ = compressed_size; } else { if (compressed_size_ != compressed_size) { fprintf(stderr, "central directory and file header inconsistent\n"); abort(); } } if (uncompressed_size_ == 0) { uncompressed_size_ = uncompressed_size; } else { if (uncompressed_size_ != uncompressed_size) { fprintf(stderr, "central directory and file header inconsistent\n"); abort(); } } if (is_class_file) { if (is_compressed) { ProcessCompressedFile(); } else { ProcessUncompressedFile(); } } else { if (is_compressed) { SkipCompressedFile(); } else { SkipUncompressedFile(); } } if (general_purpose_bit_flag_ & GENERAL_PURPOSE_BIT_FLAG_COMPRESSED) { // Skip the data descriptor. Some implementations do not put the signature // here, so check if the next 4 bytes are a signature, and if so, skip the // next 12 bytes (for CRC, compressed/uncompressed size), otherwise skip // the next 8 bytes (because the value just read was the CRC). u4 signature = get_u4le(p); if (signature == DATA_DESCRIPTOR_SIGNATURE) { p += 4 * 3; } else { p += 4 * 2; } } if (q - zipdata_out_mapped_ > MAX_MAPPED_REGION) { munmap(zipdata_out_mapped_, MAX_MAPPED_REGION); zipdata_out_mapped_ += MAX_MAPPED_REGION; } if (p - zipdata_in_mapped_ > MAX_MAPPED_REGION) { munmap(const_cast(zipdata_in_mapped_), MAX_MAPPED_REGION); zipdata_in_mapped_ += MAX_MAPPED_REGION; } } void JarStripper::SkipUncompressedFile() { // In this case, compressed_size_ == uncompressed_size_ (since the file is // uncompressed), so we can use either. if (compressed_size_ != uncompressed_size_) { fprintf(stderr, "compressed size != uncompressed size, although the file " "is uncompressed.\n"); abort(); } EnsureRemaining(compressed_size_, "file_data"); p += compressed_size_; } u1* JarStripper::UncompressFile() { size_t in_offset = p - zipdata_in_; size_t remaining = in_length_ - in_offset; z_stream stream; stream.zalloc = Z_NULL; stream.zfree = Z_NULL; stream.opaque = Z_NULL; stream.avail_in = remaining; stream.next_in = (Bytef *) p; int ret = inflateInit2(&stream, -MAX_WBITS); if (ret != Z_OK) { fprintf(stderr, "inflateInit: %d\n", ret); abort(); } int uncompressed_until_now = 0; while (true) { stream.avail_out = uncompressed_data_allocated_ - uncompressed_until_now; stream.next_out = uncompressed_data_ + uncompressed_until_now; int old_avail_out = stream.avail_out; ret = inflate(&stream, Z_SYNC_FLUSH); int uncompressed_now = old_avail_out - stream.avail_out; uncompressed_until_now += uncompressed_now; switch (ret) { case Z_STREAM_END: { // zlib said that there is no more data to decompress. u1 *new_p = reinterpret_cast(stream.next_in); compressed_size_ = new_p - p; uncompressed_size_ = uncompressed_until_now; p = new_p; inflateEnd(&stream); return uncompressed_data_; } case Z_OK: { // zlib said that there is no more room in the buffer allocated for // the decompressed data. Enlarge that buffer and try again. if (uncompressed_data_allocated_ == MAX_BUFFER_SIZE) { fprintf(stderr, "ijar does not support decompressing files " "larger than %dMB.\n", (int) (MAX_BUFFER_SIZE/(1024*1024))); abort(); } uncompressed_data_allocated_ *= 2; if (uncompressed_data_allocated_ > MAX_BUFFER_SIZE) { uncompressed_data_allocated_ = MAX_BUFFER_SIZE; } uncompressed_data_ = reinterpret_cast( realloc(uncompressed_data_, uncompressed_data_allocated_)); break; } case Z_DATA_ERROR: case Z_BUF_ERROR: case Z_STREAM_ERROR: case Z_NEED_DICT: default: { fprintf(stderr, "zlib returned error code %d during inflate.\n", ret); abort(); } } } } void JarStripper::SkipCompressedFile() { EnsureRemaining(compressed_size_, "file_data"); p += compressed_size_; } u1* JarStripper::WriteLocalFileHeader() { LocalFileEntry *entry = new LocalFileEntry; entry->local_header_offset = Offset(q); entry->file_name_length = file_name_length_; entry->file_name = new u1[file_name_length_]; memcpy(entry->file_name, file_name_, file_name_length_); entry->extra_field_length = 0; entry->extra_field = (const u1*)""; // Output the ZIP local_file_header: put_u4le(q, LOCAL_FILE_HEADER_SIGNATURE); put_u2le(q, ZIP_VERSION_TO_EXTRACT); // version to extract put_u2le(q, 0); // general purpose bit flag put_u2le(q, COMPRESSION_METHOD_STORED); // compression method: put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, 0); // crc32 (jar/javac tools don't care) u1 *compressed_size_ptr = q; put_u4le(q, 0); // compressed_size = placeholder put_u4le(q, 0); // uncompressed_size = placeholder put_u2le(q, entry->file_name_length); put_u2le(q, entry->extra_field_length); put_n(q, entry->file_name, entry->file_name_length); put_n(q, entry->extra_field, entry->extra_field_length); entries_.push_back(entry); return compressed_size_ptr; } void JarStripper::WriteFileSizeInLocalFileHeader(u1 *compressed_size_ptr, size_t out_length) { // uncompressed size and compressed size are the same, since the output // ijar is uncompressed. put_u4le(compressed_size_ptr, out_length); // compressed_size put_u4le(compressed_size_ptr, out_length); // uncompressed_size } void JarStripper::ProcessRawClassData(const u1 *classdata_in) { if (verbose) { // file_name_ is not NUL-terminated. fprintf(stderr, "INFO: StripClass: %.*s\n", file_name_length_, file_name_); } u1 *compressed_size_ptr = WriteLocalFileHeader(); u1 *classdata_out = q; StripClass(q, classdata_in, uncompressed_size_); // actually process it size_t out_length = q - classdata_out; WriteFileSizeInLocalFileHeader(compressed_size_ptr, out_length); entries_.back()->uncompressed_length = out_length; } void JarStripper::ProcessCompressedFile() { u1 *classdata_in = UncompressFile(); ProcessRawClassData(classdata_in); } void JarStripper::ProcessUncompressedFile() { // In this case, compressed_size_ == uncompressed_size_ (since the file is // uncompressed), so we can use either. if (compressed_size_ != uncompressed_size_) { fprintf(stderr, "compressed size != uncompressed size, although the file " "is uncompressed.\n"); abort(); } EnsureRemaining(compressed_size_, "file_data"); const u1 *file_data = p; p += compressed_size_; ProcessRawClassData(file_data); } void JarStripper::WriteCentralDirectory() { // central directory: const u1 *central_directory_start = q; for (int ii = 0; ii < entries_.size(); ++ii) { LocalFileEntry *entry = entries_[ii]; put_u4le(q, CENTRAL_FILE_HEADER_SIGNATURE); put_u2le(q, 0); // version made by put_u2le(q, ZIP_VERSION_TO_EXTRACT); // version to extract put_u2le(q, 0); // general purpose bit flag put_u2le(q, COMPRESSION_METHOD_STORED); // compression method: put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, 0); // crc32 (jar/javac tools don't care) put_u4le(q, entry->uncompressed_length); // compressed_size put_u4le(q, entry->uncompressed_length); // uncompressed_size put_u2le(q, entry->file_name_length); put_u2le(q, entry->extra_field_length); put_u2le(q, 0); // file comment length put_u2le(q, 0); // disk number start put_u2le(q, 0); // internal file attributes put_u4le(q, 0); // external file attributes // relative offset of local header: put_u4le(q, entry->local_header_offset); put_n(q, entry->file_name, entry->file_name_length); put_n(q, entry->extra_field, entry->extra_field_length); } u4 central_directory_size = q - central_directory_start; put_u4le(q, END_OF_CENTRAL_DIR_SIGNATURE); put_u2le(q, 0); // number of this disk put_u2le(q, 0); // number of the disk with the start of the central directory put_u2le(q, entries_.size()); // # central dir entries on this disk put_u2le(q, entries_.size()); // total # entries in the central directory put_u4le(q, central_directory_size); // size of the central directory put_u4le(q, Offset(central_directory_start)); // offset of start of central // directory wrt starting disk put_u2le(q, 0); // .ZIP file comment length } // Reads and returns some metadata of the next file from the central directory: // - compressed size // - uncompressed size // - whether the entry is a class file (to be included in the output). // Precondition: p points to the beginning of an entry in the central dir // Postcondition: p points to the beginning of the next entry in the central dir // Returns true if the central directory contains another file and false if not. // Of course, in the latter case, the size output variables are not changed. // Note that the central directory is always followed by another data structure // that has a signature, so parsing it this way is safe. static bool ProcessCentralDirEntry( const u1 *&p, size_t *compressed_size, size_t *uncompressed_size, bool *is_class_file) { u4 signature = get_u4le(p); if (signature != CENTRAL_FILE_HEADER_SIGNATURE) { return false; } p += 16; // skip to 'compressed size' field *compressed_size = get_u4le(p); *uncompressed_size = get_u4le(p); u2 file_name_length = get_u2le(p); u2 extra_field_length = get_u2le(p); u2 file_comment_length = get_u2le(p); p += 12; // skip to file name field { static const int len = strlen(".class"); *is_class_file = file_name_length >= len && memcmp(".class", p + file_name_length - len, len) == 0; } p += file_name_length; p += extra_field_length; p += file_comment_length; return true; } // Given the data in the zip file, returns the offset of the central directory // and the number of files contained in it. bool FindZipCentralDirectory(const u1* bytes, size_t in_length, u4* offset) { static const int MAX_COMMENT_LENGTH = 0xffff; static const int CENTRAL_DIR_LOCATOR_SIZE = 22; // Maximum distance of start of central dir locator from end of file static const int MAX_DELTA = MAX_COMMENT_LENGTH + CENTRAL_DIR_LOCATOR_SIZE; const u1* last_pos_to_check = in_length < MAX_DELTA ? bytes : bytes + (in_length - MAX_DELTA); const u1* current; bool found = false; for (current = bytes + in_length - CENTRAL_DIR_LOCATOR_SIZE; current >= last_pos_to_check; current-- ) { const u1* p = current; if (get_u4le(p) != END_OF_CENTRAL_DIR_SIGNATURE) { continue; } p += 16; // skip to comment length field u2 comment_length = get_u2le(p); // Does the comment go exactly till the end of the file? if (current + comment_length + CENTRAL_DIR_LOCATOR_SIZE != bytes + in_length) { continue; } // Hooray, we found it! found = true; break; } if (!found) { fprintf(stderr, "file is invalid or corrupted (missing end of central " "directory record)\n"); return false; } get_u4le(current); // central directory locator signature, already checked u2 number_of_this_disk = get_u2le(current); u2 disk_with_central_dir = get_u2le(current); u2 central_dir_entries_on_this_disk = get_u2le(current); u2 central_dir_entries = get_u2le(current); get_u4le(current); // central directory size u4 central_dir_offset = get_u4le(current); if (number_of_this_disk != 0 || disk_with_central_dir != 0 || central_dir_entries_on_this_disk != central_dir_entries) { fprintf(stderr, "multi-disk JAR files are not supported\n"); return false; } // Do not change output values before determining that they are OK. *offset = central_dir_offset; return true; } // Gives a maximum bound on the size of the interface JAR. Basically, adds // the difference between the compressed and uncompressed sizes to the size // of the input file. static u8 CalculateOutputLength(const u1* central_dir, size_t in_length) { const u1* current = central_dir; u8 compressed_size = 0; u8 uncompressed_size = 0; u8 skipped_compressed_size = 0; while (true) { size_t file_compressed, file_uncompressed; bool is_class_file; if (!ProcessCentralDirEntry(current, &file_compressed, &file_uncompressed, &is_class_file)) { break; } if (is_class_file) { compressed_size += (u8) file_compressed; uncompressed_size += (u8) file_uncompressed; } else { skipped_compressed_size += file_compressed; } } // The worst case is when the output is simply the input uncompressed. The // metadata in the zip file will stay the same, so the file will grow by the // difference between the compressed and uncompressed sizes. return (u8) in_length - skipped_compressed_size + (uncompressed_size - compressed_size); } int OpenFilesAndProcessJar(const char *file_out, const char *file_in) { int fd_in = open(file_in, O_RDONLY); if (fd_in < 0) { fprintf(stderr, "Can't open file %s for reading: %s.\n", file_in, strerror(errno)); return 1; } off_t length; SYSCALL(length = lseek(fd_in, 0, SEEK_END)); void *zipdata_in = mmap(NULL, length, PROT_READ, MAP_PRIVATE, fd_in, 0); if (zipdata_in == MAP_FAILED) { perror("mmap(in)"); return 1; } u4 central_dir_offset; if (!devtools_ijar::FindZipCentralDirectory( static_cast(zipdata_in), length, ¢ral_dir_offset)) { abort(); } const u1* central_dir = static_cast(zipdata_in) + central_dir_offset; u8 output_length = CalculateOutputLength(central_dir, length); if (output_length > kMaximumOutputSize) { fprintf(stderr, "Uncompressed input jar has size %llu, " "which exceeds the maximum supported output size %llu.\n" "Assuming that ijar will be smaller and hoping for the best.\n", output_length, kMaximumOutputSize); output_length = kMaximumOutputSize; } int fd_out = open(file_out, O_CREAT|O_RDWR|O_TRUNC, 0644); if (fd_out < 0) { fprintf(stderr, "Can't create file %s: %s.\n", file_out, strerror(errno)); return 1; } // Create mmap-able sparse file SYSCALL(ftruncate(fd_out, output_length)); // Ensure that any buffer overflow in JarStripper will result in // SIGSEGV or SIGBUS by over-allocating beyond the end of the file. size_t mmap_length = std::min(output_length + sysconf(_SC_PAGESIZE), (u8) std::numeric_limits::max()); void *zipdata_out = mmap(NULL, mmap_length, PROT_WRITE, MAP_SHARED, fd_out, 0); if (zipdata_out == MAP_FAILED) { fprintf(stderr, "output_length=%llu\n", output_length); perror("mmap(out)"); return 1; } JarStripper stripper((const u1*) zipdata_in, (u1*) zipdata_out, length, (const u1*) central_dir); off_t out_length = stripper.Run(); SYSCALL(ftruncate(fd_out, out_length)); SYSCALL(close(fd_out)); SYSCALL(close(fd_in)); if (verbose) { fprintf(stderr, "INFO: produced interface jar: %s -> %s (%d%%).\n", file_in, file_out, (int) (100.0 * out_length / length)); } return 0; } } // namespace devtools_ijar