// Copyright 2007 Alan Donovan. All rights reserved. // // Author: Alan Donovan // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // zip.cc -- .zip (.jar) file reading/writing routines. // // See README.txt for details. // // See http://www.pkware.com/documents/casestudies/APPNOTE.TXT // for definition of PKZIP file format. #define _FILE_OFFSET_BITS 64 // Support zip files larger than 2GB #include #include #include #include #include #include #include #include #include #include #include #include #include #include "third_party/ijar/zip.h" #include #define LOCAL_FILE_HEADER_SIGNATURE 0x04034b50 #define CENTRAL_FILE_HEADER_SIGNATURE 0x02014b50 #define END_OF_CENTRAL_DIR_SIGNATURE 0x06054b50 #define DATA_DESCRIPTOR_SIGNATURE 0x08074b50 // version to extract: 1.0 - default value from APPNOTE.TXT. // Output JAR files contain no extra ZIP features, so this is enough. #define ZIP_VERSION_TO_EXTRACT 10 #define COMPRESSION_METHOD_STORED 0 // no compression #define COMPRESSION_METHOD_DEFLATED 8 #define GENERAL_PURPOSE_BIT_FLAG_COMPRESSED (1 << 3) #define GENERAL_PURPOSE_BIT_FLAG_UTF8_ENCODED (1 << 11) #define GENERAL_PURPOSE_BIT_FLAG_COMPRESSION_SPEED ((1 << 2) | (1 << 1)) #define GENERAL_PURPOSE_BIT_FLAG_SUPPORTED \ (GENERAL_PURPOSE_BIT_FLAG_COMPRESSED \ | GENERAL_PURPOSE_BIT_FLAG_UTF8_ENCODED \ | GENERAL_PURPOSE_BIT_FLAG_COMPRESSION_SPEED) namespace devtools_ijar { // In the absence of ZIP64 support, zip files are limited to 4GB. // http://www.info-zip.org/FAQ.html#limits static const u8 kMaximumOutputSize = std::numeric_limits::max(); static bool ProcessCentralDirEntry(const u1 *&p, size_t *compressed_size, size_t *uncompressed_size, char *filename, size_t filename_size, u4 *attr, u4 *offset); // // A class representing a ZipFile for reading. Its public API is exposed // using the ZipExtractor abstract class. // class InputZipFile : public ZipExtractor { public: InputZipFile(ZipExtractorProcessor *processor, int fd, off_t in_length, off_t in_offset, const u1* zipdata_in, const u1* central_dir); virtual ~InputZipFile(); virtual const char* GetError() { if (errmsg[0] == 0) { return NULL; } return errmsg; } virtual bool ProcessNext(); virtual void Reset(); virtual size_t GetSize() { return in_length_; } virtual u8 CalculateOutputLength(); private: ZipExtractorProcessor *processor; int fd_in; // Input file descripor // InputZipFile is responsible for maintaining the following // pointers. They are allocated by the Create() method before // the object is actually created using mmap. const u1 * const zipdata_in_; // start of input file mmap const u1 * zipdata_in_mapped_; // start of still mapped region const u1 * const central_dir_; // central directory in input file size_t in_length_; // size of the input file size_t in_offset_; // offset the input file const u1 *p; // input cursor const u1* central_dir_current_; // central dir input cursor // Buffer size is initially INITIAL_BUFFER_SIZE. It doubles in size every // time it is found too small, until it reaches MAX_BUFFER_SIZE. If that is // not enough, we bail out. We only decompress class files, so they should // be smaller than 64K anyway, but we give a little leeway. // MAX_BUFFER_SIZE must be bigger than the size of the biggest file in the // ZIP. It is set to 128M here so we can uncompress the Bazel server with // this library. static const size_t INITIAL_BUFFER_SIZE = 256 * 1024; // 256K static const size_t MAX_BUFFER_SIZE = 128 * 1024 * 1024; static const size_t MAX_MAPPED_REGION = 32 * 1024 * 1024; // These metadata fields are the fields of the ZIP header of the file being // processed. u2 extract_version_; u2 general_purpose_bit_flag_; u2 compression_method_; u4 uncompressed_size_; u4 compressed_size_; u2 file_name_length_; u2 extra_field_length_; const u1 *file_name_; const u1 *extra_field_; // Administration of memory reserved for decompressed data. We use the same // buffer for each file to avoid some malloc()/free() calls and free the // memory only in the dtor. C-style memory management is used so that we // can call realloc. u1 *uncompressed_data_; size_t uncompressed_data_allocated_; // Copy of the last filename entry - Null-terminated. char filename[PATH_MAX]; // The external file attribute field u4 attr; // last error char errmsg[4*PATH_MAX]; int error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vsnprintf(errmsg, 4*PATH_MAX, fmt, ap); va_end(ap); return -1; } // Check that at least n bytes remain in the input file, otherwise // abort with an error message. "state" is the name of the field // we're about to read, for diagnostics. int EnsureRemaining(size_t n, const char *state) { size_t in_offset = p - zipdata_in_; size_t remaining = in_length_ - in_offset; if (n > remaining) { return error("Premature end of file (at offset %zd, state=%s); " "expected %zd more bytes but found %zd.\n", in_offset, state, n, remaining); } return 0; } // Read one entry from input zip file int ProcessLocalFileEntry(size_t compressed_size, size_t uncompressed_size); // Uncompress a file from the archive using zlib. The pointer returned // is owned by InputZipFile, so it must not be freed. Advances the input // cursor to the first byte after the compressed data. u1* UncompressFile(); // Skip a file int SkipFile(const bool compressed); // Process a file int ProcessFile(const bool compressed); }; // // A class implementing ZipBuilder that represent an open zip file for writing. // class OutputZipFile : public ZipBuilder { public: OutputZipFile(int fd, u1 * const zipdata_out) : fd_out(fd), zipdata_out_(zipdata_out), q(zipdata_out) { errmsg[0] = 0; } virtual const char* GetError() { if (errmsg[0] == 0) { return NULL; } return errmsg; } virtual ~OutputZipFile() { Finish(); } virtual u1* NewFile(const char* filename, const u4 attr); virtual int FinishFile(size_t filelength, bool compress = false, bool compute_crc = false); virtual int WriteEmptyFile(const char *filename); virtual size_t GetSize() { return Offset(q); } virtual int GetNumberFiles() { return entries_.size(); } virtual int Finish(); private: struct LocalFileEntry { // Start of the local header (in the output buffer). size_t local_header_offset; // Sizes of the file entry size_t uncompressed_length; size_t compressed_length; // Compression method u2 compression_method; // CRC32 u4 crc32; // external attributes field u4 external_attr; // Start/length of the file_name in the local header. u1 *file_name; u2 file_name_length; // Start/length of the extra_field in the local header. const u1 *extra_field; u2 extra_field_length; }; int fd_out; // file descriptor for the output file // OutputZipFile is responsible for maintaining the following // pointers. They are allocated by the Create() method before // the object is actually created using mmap. u1 * const zipdata_out_; // start of output file mmap u1 *q; // output cursor u1 *header_ptr; // Current pointer to "compression method" entry. // List of entries to write the central directory std::vector entries_; // last error char errmsg[4*PATH_MAX]; int error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vsnprintf(errmsg, 4*PATH_MAX, fmt, ap); va_end(ap); return -1; } // Write the ZIP central directory structure for each local file // entry in "entries". void WriteCentralDirectory(); // Returns the offset of the pointer relative to the start of the // output zip file. size_t Offset(const u1 *const x) { return x - zipdata_out_; } // Write ZIP file header in the output. Since the compressed size is not // known in advance, it must be recorded later. This method returns a pointer // to "compressed size" in the file header that should be passed to // WriteFileSizeInLocalFileHeader() later. u1* WriteLocalFileHeader(const char *filename, const u4 attr); // Fill in the "compressed size" and "uncompressed size" fields in a local // file header previously written by WriteLocalFileHeader(). size_t WriteFileSizeInLocalFileHeader(u1 *header_ptr, size_t out_length, bool compress = false, const u4 crc = 0); }; // // Implementation of InputZipFile // bool InputZipFile::ProcessNext() { // Process the next entry in the central directory. Also make sure that the // content pointer is in sync. size_t compressed, uncompressed; u4 offset; if (!ProcessCentralDirEntry(central_dir_current_, &compressed, &uncompressed, filename, PATH_MAX, &attr, &offset)) { return false; } // There might be an offset specified in the central directory that does // not match the file offset, if so, correct the pointer. if (offset != 0 && (p != (zipdata_in_ + in_offset_ + offset))) { p = zipdata_in_ + offset; } if (EnsureRemaining(4, "signature") < 0) { return false; } u4 signature = get_u4le(p); if (signature == LOCAL_FILE_HEADER_SIGNATURE) { if (ProcessLocalFileEntry(compressed, uncompressed) < 0) { return false; } } else { error("local file header signature for file %s not found\n", filename); return false; } return true; } int InputZipFile::ProcessLocalFileEntry( size_t compressed_size, size_t uncompressed_size) { if (EnsureRemaining(26, "extract_version") < 0) { return -1; } extract_version_ = get_u2le(p); general_purpose_bit_flag_ = get_u2le(p); if ((general_purpose_bit_flag_ & ~GENERAL_PURPOSE_BIT_FLAG_SUPPORTED) != 0) { return error("Unsupported value (0x%04x) in general purpose bit flag.\n", general_purpose_bit_flag_); } compression_method_ = get_u2le(p); if (compression_method_ != COMPRESSION_METHOD_DEFLATED && compression_method_ != COMPRESSION_METHOD_STORED) { return error("Unsupported compression method (%d).\n", compression_method_); } // skip over: last_mod_file_time, last_mod_file_date, crc32 p += 2 + 2 + 4; compressed_size_ = get_u4le(p); uncompressed_size_ = get_u4le(p); file_name_length_ = get_u2le(p); extra_field_length_ = get_u2le(p); if (EnsureRemaining(file_name_length_, "file_name") < 0) { return -1; } file_name_ = p; p += file_name_length_; if (EnsureRemaining(extra_field_length_, "extra_field") < 0) { return -1; } extra_field_ = p; p += extra_field_length_; bool is_compressed = compression_method_ == COMPRESSION_METHOD_DEFLATED; // If the zip is compressed, compressed and uncompressed size members are // zero in the local file header. If not, check that they are the same as the // lengths from the central directory, otherwise, just believe the central // directory if (compressed_size_ == 0) { compressed_size_ = compressed_size; } else { if (compressed_size_ != compressed_size) { return error("central directory and file header inconsistent\n"); } } if (uncompressed_size_ == 0) { uncompressed_size_ = uncompressed_size; } else { if (uncompressed_size_ != uncompressed_size) { return error("central directory and file header inconsistent\n"); } } if (processor->Accept(filename, attr)) { if (ProcessFile(is_compressed) < 0) { return -1; } } else { if (SkipFile(is_compressed) < 0) { return -1; } } if (general_purpose_bit_flag_ & GENERAL_PURPOSE_BIT_FLAG_COMPRESSED) { // Skip the data descriptor. Some implementations do not put the signature // here, so check if the next 4 bytes are a signature, and if so, skip the // next 12 bytes (for CRC, compressed/uncompressed size), otherwise skip // the next 8 bytes (because the value just read was the CRC). u4 signature = get_u4le(p); if (signature == DATA_DESCRIPTOR_SIGNATURE) { p += 4 * 3; } else { p += 4 * 2; } } if (p > zipdata_in_mapped_ + MAX_MAPPED_REGION) { munmap(const_cast(zipdata_in_mapped_), MAX_MAPPED_REGION); zipdata_in_mapped_ += MAX_MAPPED_REGION; } return 0; } int InputZipFile::SkipFile(const bool compressed) { if (!compressed) { // In this case, compressed_size_ == uncompressed_size_ (since the file is // uncompressed), so we can use either. if (compressed_size_ != uncompressed_size_) { return error("compressed size != uncompressed size, although the file " "is uncompressed.\n"); } } if (EnsureRemaining(compressed_size_, "file_data") < 0) { return -1; } p += compressed_size_; return 0; } u1* InputZipFile::UncompressFile() { size_t in_offset = p - zipdata_in_; size_t remaining = in_length_ - in_offset; z_stream stream; stream.zalloc = Z_NULL; stream.zfree = Z_NULL; stream.opaque = Z_NULL; stream.avail_in = remaining; stream.next_in = (Bytef *) p; int ret = inflateInit2(&stream, -MAX_WBITS); if (ret != Z_OK) { error("inflateInit: %d\n", ret); return NULL; } int uncompressed_until_now = 0; while (true) { stream.avail_out = uncompressed_data_allocated_ - uncompressed_until_now; stream.next_out = uncompressed_data_ + uncompressed_until_now; int old_avail_out = stream.avail_out; ret = inflate(&stream, Z_SYNC_FLUSH); int uncompressed_now = old_avail_out - stream.avail_out; uncompressed_until_now += uncompressed_now; switch (ret) { case Z_STREAM_END: { // zlib said that there is no more data to decompress. u1 *new_p = reinterpret_cast(stream.next_in); compressed_size_ = new_p - p; uncompressed_size_ = uncompressed_until_now; p = new_p; inflateEnd(&stream); return uncompressed_data_; } case Z_OK: { // zlib said that there is no more room in the buffer allocated for // the decompressed data. Enlarge that buffer and try again. if (uncompressed_data_allocated_ == MAX_BUFFER_SIZE) { error("ijar does not support decompressing files " "larger than %dMB.\n", (int) (MAX_BUFFER_SIZE/(1024*1024))); return NULL; } uncompressed_data_allocated_ *= 2; if (uncompressed_data_allocated_ > MAX_BUFFER_SIZE) { uncompressed_data_allocated_ = MAX_BUFFER_SIZE; } uncompressed_data_ = reinterpret_cast( realloc(uncompressed_data_, uncompressed_data_allocated_)); break; } case Z_DATA_ERROR: case Z_BUF_ERROR: case Z_STREAM_ERROR: case Z_NEED_DICT: default: { error("zlib returned error code %d during inflate.\n", ret); return NULL; } } } } int InputZipFile::ProcessFile(const bool compressed) { const u1 *file_data; if (compressed) { file_data = UncompressFile(); if (file_data == NULL) { return -1; } } else { // In this case, compressed_size_ == uncompressed_size_ (since the file is // uncompressed), so we can use either. if (compressed_size_ != uncompressed_size_) { return error("compressed size != uncompressed size, although the file " "is uncompressed.\n"); } if (EnsureRemaining(compressed_size_, "file_data") < 0) { return -1; } file_data = p; p += compressed_size_; } processor->Process(filename, attr, file_data, uncompressed_size_); return 0; } // Reads and returns some metadata of the next file from the central directory: // - compressed size // - uncompressed size // - whether the entry is a class file (to be included in the output). // Precondition: p points to the beginning of an entry in the central dir // Postcondition: p points to the beginning of the next entry in the central dir // Returns true if the central directory contains another file and false if not. // Of course, in the latter case, the size output variables are not changed. // Note that the central directory is always followed by another data structure // that has a signature, so parsing it this way is safe. static bool ProcessCentralDirEntry( const u1 *&p, size_t *compressed_size, size_t *uncompressed_size, char *filename, size_t filename_size, u4 *attr, u4 *offset) { u4 signature = get_u4le(p); if (signature != CENTRAL_FILE_HEADER_SIGNATURE) { return false; } p += 16; // skip to 'compressed size' field *compressed_size = get_u4le(p); *uncompressed_size = get_u4le(p); u2 file_name_length = get_u2le(p); u2 extra_field_length = get_u2le(p); u2 file_comment_length = get_u2le(p); p += 4; // skip to external file attributes field *attr = get_u4le(p); *offset = get_u4le(p); { size_t len = (file_name_length < filename_size) ? file_name_length : (filename_size - 1); memcpy(reinterpret_cast(filename), p, len); filename[len] = 0; } p += file_name_length; p += extra_field_length; p += file_comment_length; return true; } // Gives a maximum bound on the size of the interface JAR. Basically, adds // the difference between the compressed and uncompressed sizes to the size // of the input file. u8 InputZipFile::CalculateOutputLength() { const u1* current = central_dir_; u8 compressed_size = 0; u8 uncompressed_size = 0; u8 skipped_compressed_size = 0; u4 attr; u4 offset; char filename[PATH_MAX]; while (true) { size_t file_compressed, file_uncompressed; if (!ProcessCentralDirEntry(current, &file_compressed, &file_uncompressed, filename, PATH_MAX, &attr, &offset)) { break; } if (processor->Accept(filename, attr)) { compressed_size += (u8) file_compressed; uncompressed_size += (u8) file_uncompressed; } else { skipped_compressed_size += file_compressed; } } // The worst case is when the output is simply the input uncompressed. The // metadata in the zip file will stay the same, so the file will grow by the // difference between the compressed and uncompressed sizes. return (u8) in_length_ - skipped_compressed_size + (uncompressed_size - compressed_size); } // Given the data in the zip file, returns the offset of the central directory // and the number of files contained in it. bool FindZipCentralDirectory(const u1* bytes, size_t in_length, u4* offset, const u1** central_dir) { static const int MAX_COMMENT_LENGTH = 0xffff; static const int CENTRAL_DIR_LOCATOR_SIZE = 22; // Maximum distance of start of central dir locator from end of file static const int MAX_DELTA = MAX_COMMENT_LENGTH + CENTRAL_DIR_LOCATOR_SIZE; const u1* last_pos_to_check = in_length < MAX_DELTA ? bytes : bytes + (in_length - MAX_DELTA); const u1* current; bool found = false; for (current = bytes + in_length - CENTRAL_DIR_LOCATOR_SIZE; current >= last_pos_to_check; current-- ) { const u1* p = current; if (get_u4le(p) != END_OF_CENTRAL_DIR_SIGNATURE) { continue; } p += 16; // skip to comment length field u2 comment_length = get_u2le(p); // Does the comment go exactly till the end of the file? if (current + comment_length + CENTRAL_DIR_LOCATOR_SIZE != bytes + in_length) { continue; } // Hooray, we found it! found = true; break; } if (!found) { fprintf(stderr, "file is invalid or corrupted (missing end of central " "directory record)\n"); return false; } const u1* end_of_central_dir = current; get_u4le(current); // central directory locator signature, already checked u2 number_of_this_disk = get_u2le(current); u2 disk_with_central_dir = get_u2le(current); u2 central_dir_entries_on_this_disk = get_u2le(current); u2 central_dir_entries = get_u2le(current); u4 central_dir_size = get_u4le(current); u4 central_dir_offset = get_u4le(current); u2 file_comment_length = get_u2le(current); current += file_comment_length; // set current to the end of the central dir if (number_of_this_disk != 0 || disk_with_central_dir != 0 || central_dir_entries_on_this_disk != central_dir_entries) { fprintf(stderr, "multi-disk JAR files are not supported\n"); return false; } // Do not change output values before determining that they are OK. *offset = central_dir_offset; // Central directory start can then be used to determine the actual // starts of the zip file (which can be different in case of a non-zip // header like for auto-extractable binaries). *central_dir = end_of_central_dir - central_dir_size; return true; } void InputZipFile::Reset() { central_dir_current_ = central_dir_; zipdata_in_mapped_ = zipdata_in_; p = zipdata_in_ + in_offset_; } int ZipExtractor::ProcessAll() { while (ProcessNext()) {} if (GetError() != NULL) { return -1; } return 0; } ZipExtractor* ZipExtractor::Create(const char* filename, ZipExtractorProcessor *processor) { int fd_in = open(filename, O_RDONLY); if (fd_in < 0) { return NULL; } off_t length = lseek(fd_in, 0, SEEK_END); if (length < 0) { return NULL; } void *zipdata_in = mmap(NULL, length, PROT_READ, MAP_PRIVATE, fd_in, 0); if (zipdata_in == MAP_FAILED) { return NULL; } u4 central_dir_offset; const u1 *central_dir = NULL; if (!devtools_ijar::FindZipCentralDirectory( static_cast(zipdata_in), length, ¢ral_dir_offset, ¢ral_dir)) { errno = EIO; // we don't really have a good error number return NULL; } const u1 *zipdata_start = static_cast(zipdata_in); off_t offset = - static_cast(zipdata_start + central_dir_offset - central_dir); return new InputZipFile(processor, fd_in, length, offset, zipdata_start, central_dir); } InputZipFile::InputZipFile(ZipExtractorProcessor *processor, int fd, off_t in_length, off_t in_offset, const u1* zipdata_in, const u1* central_dir) : processor(processor), fd_in(fd), zipdata_in_(zipdata_in), zipdata_in_mapped_(zipdata_in), central_dir_(central_dir), in_length_(in_length), in_offset_(in_offset), p(zipdata_in + in_offset), central_dir_current_(central_dir) { uncompressed_data_allocated_ = INITIAL_BUFFER_SIZE; uncompressed_data_ = reinterpret_cast(malloc(uncompressed_data_allocated_)); errmsg[0] = 0; } InputZipFile::~InputZipFile() { free(uncompressed_data_); close(fd_in); } // // Implementation of OutputZipFile // int OutputZipFile::WriteEmptyFile(const char *filename) { const u1* file_name = (const u1*) filename; size_t file_name_length = strlen(filename); LocalFileEntry *entry = new LocalFileEntry; entry->local_header_offset = Offset(q); entry->external_attr = 0; entry->crc32 = 0; // Output the ZIP local_file_header: put_u4le(q, LOCAL_FILE_HEADER_SIGNATURE); put_u2le(q, 10); // extract_version put_u2le(q, 0); // general_purpose_bit_flag put_u2le(q, 0); // compression_method put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, entry->crc32); // crc32 put_u4le(q, 0); // compressed_size put_u4le(q, 0); // uncompressed_size put_u2le(q, file_name_length); put_u2le(q, 0); // extra_field_length put_n(q, file_name, file_name_length); entry->file_name_length = file_name_length; entry->extra_field_length = 0; entry->compressed_length = 0; entry->uncompressed_length = 0; entry->compression_method = 0; entry->extra_field = (const u1 *)""; entry->file_name = (u1*) strdup((const char *) file_name); entries_.push_back(entry); return 0; } void OutputZipFile::WriteCentralDirectory() { // central directory: const u1 *central_directory_start = q; for (size_t ii = 0; ii < entries_.size(); ++ii) { LocalFileEntry *entry = entries_[ii]; put_u4le(q, CENTRAL_FILE_HEADER_SIGNATURE); put_u2le(q, 0); // version made by put_u2le(q, ZIP_VERSION_TO_EXTRACT); // version to extract put_u2le(q, 0); // general purpose bit flag put_u2le(q, entry->compression_method); // compression method: put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, entry->crc32); // crc32 put_u4le(q, entry->compressed_length); // compressed_size put_u4le(q, entry->uncompressed_length); // uncompressed_size put_u2le(q, entry->file_name_length); put_u2le(q, entry->extra_field_length); put_u2le(q, 0); // file comment length put_u2le(q, 0); // disk number start put_u2le(q, 0); // internal file attributes put_u4le(q, entry->external_attr); // external file attributes // relative offset of local header: put_u4le(q, entry->local_header_offset); put_n(q, entry->file_name, entry->file_name_length); put_n(q, entry->extra_field, entry->extra_field_length); } u4 central_directory_size = q - central_directory_start; put_u4le(q, END_OF_CENTRAL_DIR_SIGNATURE); put_u2le(q, 0); // number of this disk put_u2le(q, 0); // number of the disk with the start of the central directory put_u2le(q, entries_.size()); // # central dir entries on this disk put_u2le(q, entries_.size()); // total # entries in the central directory put_u4le(q, central_directory_size); // size of the central directory put_u4le(q, Offset(central_directory_start)); // offset of start of central // directory wrt starting disk put_u2le(q, 0); // .ZIP file comment length } u1* OutputZipFile::WriteLocalFileHeader(const char* filename, const u4 attr) { off_t file_name_length_ = strlen(filename); LocalFileEntry *entry = new LocalFileEntry; entry->local_header_offset = Offset(q); entry->file_name_length = file_name_length_; entry->file_name = new u1[file_name_length_]; entry->external_attr = attr; memcpy(entry->file_name, filename, file_name_length_); entry->extra_field_length = 0; entry->extra_field = (const u1 *)""; // Output the ZIP local_file_header: put_u4le(q, LOCAL_FILE_HEADER_SIGNATURE); put_u2le(q, ZIP_VERSION_TO_EXTRACT); // version to extract put_u2le(q, 0); // general purpose bit flag u1 *header_ptr = q; put_u2le(q, COMPRESSION_METHOD_STORED); // compression method = placeholder put_u2le(q, 0); // last_mod_file_time put_u2le(q, 0); // last_mod_file_date put_u4le(q, entry->crc32); // crc32 put_u4le(q, 0); // compressed_size = placeholder put_u4le(q, 0); // uncompressed_size = placeholder put_u2le(q, entry->file_name_length); put_u2le(q, entry->extra_field_length); put_n(q, entry->file_name, entry->file_name_length); put_n(q, entry->extra_field, entry->extra_field_length); entries_.push_back(entry); return header_ptr; } // Try to compress a file entry in memory using the deflate algorithm. // It will compress buf (of size length) unless the compressed size is bigger // than the input size. The result will overwrite the content of buf and the // final size is returned. size_t TryDeflate(u1 *buf, size_t length) { u1 *outbuf = reinterpret_cast(malloc(length)); z_stream stream; // Initialize the z_stream strcut for reading from buf and wrinting in outbuf. stream.zalloc = Z_NULL; stream.zfree = Z_NULL; stream.opaque = Z_NULL; stream.total_in = length; stream.avail_in = length; stream.total_out = length; stream.avail_out = length; stream.next_in = buf; stream.next_out = outbuf; // deflateInit2 negative windows size prevent the zlib wrapper to be used. if (deflateInit2(&stream, Z_DEFAULT_COMPRESSION, Z_DEFLATED, -MAX_WBITS, 8, Z_DEFAULT_STRATEGY) != Z_OK) { // Failure to compress => return the buffer uncompressed free(outbuf); return length; } if (deflate(&stream, Z_FINISH) == Z_STREAM_END) { // Compression successful and fits in outbuf, let's copy the result in buf. length = stream.total_out; memcpy(buf, outbuf, length); } deflateEnd(&stream); free(outbuf); // Return the length of the resulting buffer return length; } size_t OutputZipFile::WriteFileSizeInLocalFileHeader(u1 *header_ptr, size_t out_length, bool compress, const u4 crc) { size_t compressed_size = out_length; if (compress) { compressed_size = TryDeflate(q, out_length); } // compression method if (compressed_size < out_length) { put_u2le(header_ptr, COMPRESSION_METHOD_DEFLATED); } else { put_u2le(header_ptr, COMPRESSION_METHOD_STORED); } header_ptr += 4; put_u4le(header_ptr, crc); // crc32 put_u4le(header_ptr, compressed_size); // compressed_size put_u4le(header_ptr, out_length); // uncompressed_size return compressed_size; } int OutputZipFile::Finish() { if (fd_out > 0) { WriteCentralDirectory(); if (ftruncate(fd_out, GetSize()) < 0) { return error("ftruncate(fd_out, GetSize()): %s", strerror(errno)); } if (close(fd_out) < 0) { return error("close(fd_out): %s", strerror(errno)); } fd_out = -1; } return 0; } u1* OutputZipFile::NewFile(const char* filename, const u4 attr) { header_ptr = WriteLocalFileHeader(filename, attr); return q; } int OutputZipFile::FinishFile(size_t filelength, bool compress, bool compute_crc) { u4 crc = 0; if (compute_crc) { crc = crc32(crc, q, filelength); } size_t compressed_size = WriteFileSizeInLocalFileHeader(header_ptr, filelength, compress, crc); entries_.back()->crc32 = crc; entries_.back()->compressed_length = compressed_size; entries_.back()->uncompressed_length = filelength; if (compressed_size < filelength) { entries_.back()->compression_method = COMPRESSION_METHOD_DEFLATED; } else { entries_.back()->compression_method = COMPRESSION_METHOD_STORED; } q += compressed_size; return 0; } ZipBuilder* ZipBuilder::Create(const char* zip_file, u8 estimated_size) { if (estimated_size > kMaximumOutputSize) { fprintf(stderr, "Uncompressed input jar has size %llu, " "which exceeds the maximum supported output size %llu.\n" "Assuming that ijar will be smaller and hoping for the best.\n", estimated_size, kMaximumOutputSize); estimated_size = kMaximumOutputSize; } int fd_out = open(zip_file, O_CREAT|O_RDWR|O_TRUNC, 0644); if (fd_out < 0) { return NULL; } // Create mmap-able sparse file if (ftruncate(fd_out, estimated_size) < 0) { return NULL; } // Ensure that any buffer overflow in JarStripper will result in // SIGSEGV or SIGBUS by over-allocating beyond the end of the file. size_t mmap_length = std::min(estimated_size + sysconf(_SC_PAGESIZE), (u8) std::numeric_limits::max()); void *zipdata_out = mmap(NULL, mmap_length, PROT_WRITE, MAP_SHARED, fd_out, 0); if (zipdata_out == MAP_FAILED) { fprintf(stderr, "output_length=%llu\n", estimated_size); return NULL; } return new OutputZipFile(fd_out, (u1*) zipdata_out); } u8 ZipBuilder::EstimateSize(char **files) { struct stat statst; // Digital signature field size = 6, End of central directory = 22, Total = 28 u8 size = 28; // Count the size of all the files in the input to estimate the size of the // output. for (int i = 0; files[i] != NULL; i++) { if (stat(files[i], &statst) != 0) { fprintf(stderr, "File %s does not seem to exist.", files[i]); return 0; } size += statst.st_size; // Add sizes of Zip meta data // local file header = 30 bytes // data descriptor = 12 bytes // central directory descriptor = 46 bytes // Total: 88bytes size += 88; // The filename is stored twice (once in the central directory // and once in the local file header). size += strlen(files[i]) * 2; } return size; } } // namespace devtools_ijar