// Copyright 2016 The Bazel Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * This is PID 1 inside the sandbox environment and runs in a separate user, * mount, UTS, IPC and PID namespace. */ #include "src/main/tools/linux-sandbox-pid1.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MS_REC // Some systems do not define MS_REC in sys/mount.h. We might be able to grab it // from linux/fs.h instead (cf. #2667). #include #endif #include "src/main/tools/linux-sandbox-options.h" #include "src/main/tools/linux-sandbox.h" #include "src/main/tools/logging.h" #include "src/main/tools/process-tools.h" static int global_child_pid; static void SetupSelfDestruction(int *sync_pipe) { // We could also poll() on the pipe fd to find out when the parent goes away, // and rely on SIGCHLD interrupting that otherwise. That might require us to // install some trivial handler for SIGCHLD. Using O_ASYNC to turn the pipe // close into SIGIO may also work. Another option is signalfd, although that's // almost as obscure as this prctl. if (prctl(PR_SET_PDEATHSIG, SIGKILL) < 0) { DIE("prctl"); } // Switch to a new process group, otherwise our process group will still refer // to the outer PID namespace. We might then accidentally kill our parent by a // call to e.g. `kill(0, sig)`. if (setpgid(0, 0) < 0) { DIE("setpgid"); } // Verify that the parent still lives. char buf = 0; if (close(sync_pipe[0]) < 0) { DIE("close"); } if (write(sync_pipe[1], &buf, 1) < 0) { DIE("write"); } if (close(sync_pipe[1]) < 0) { DIE("close"); } } static void SetupMountNamespace() { // Fully isolate our mount namespace private from outside events, so that // mounts in the outside environment do not affect our sandbox. if (mount(nullptr, "/", nullptr, MS_REC | MS_PRIVATE, nullptr) < 0) { DIE("mount"); } } static void WriteFile(const std::string &filename, const char *fmt, ...) { FILE *stream = fopen(filename.c_str(), "w"); if (stream == nullptr) { DIE("fopen(%s)", filename.c_str()); } va_list ap; va_start(ap, fmt); int r = vfprintf(stream, fmt, ap); va_end(ap); if (r < 0) { DIE("vfprintf"); } if (fclose(stream) != 0) { DIE("fclose(%s)", filename.c_str()); } } static void SetupUserNamespace() { // Disable needs for CAP_SETGID. struct stat sb; if (stat("/proc/self/setgroups", &sb) == 0) { WriteFile("/proc/self/setgroups", "deny"); } else { // Ignore ENOENT, because older Linux versions do not have this file (but // also do not require writing to it). if (errno != ENOENT) { DIE("stat(/proc/self/setgroups"); } } int inner_uid, inner_gid; if (opt.fake_root) { // Change our username to 'root'. inner_uid = 0; inner_gid = 0; } else if (opt.fake_username) { // Change our username to 'nobody'. struct passwd *pwd = getpwnam("nobody"); if (pwd == nullptr) { DIE("unable to find passwd entry for user nobody") } inner_uid = pwd->pw_uid; inner_gid = pwd->pw_gid; } else { // Do not change the username inside the sandbox. inner_uid = global_outer_uid; inner_gid = global_outer_gid; } WriteFile("/proc/self/uid_map", "%d %d 1\n", inner_uid, global_outer_uid); WriteFile("/proc/self/gid_map", "%d %d 1\n", inner_gid, global_outer_gid); } static void SetupUtsNamespace() { if (sethostname("localhost", 9) < 0) { DIE("sethostname"); } if (setdomainname("localdomain", 11) < 0) { DIE("setdomainname"); } } static void MountFilesystems() { for (const std::string &tmpfs_dir : opt.tmpfs_dirs) { PRINT_DEBUG("tmpfs: %s", tmpfs_dir.c_str()); if (mount("tmpfs", tmpfs_dir.c_str(), "tmpfs", MS_NOSUID | MS_NODEV | MS_NOATIME, nullptr) < 0) { DIE("mount(tmpfs, %s, tmpfs, MS_NOSUID | MS_NODEV | MS_NOATIME, nullptr)", tmpfs_dir.c_str()); } } // Make sure that our working directory is a mount point. The easiest way to // do this is by bind-mounting it upon itself. PRINT_DEBUG("working dir: %s", opt.working_dir.c_str()); if (mount(opt.working_dir.c_str(), opt.working_dir.c_str(), nullptr, MS_BIND, nullptr) < 0) { DIE("mount(%s, %s, nullptr, MS_BIND, nullptr)", opt.working_dir.c_str(), opt.working_dir.c_str()); } for (size_t i = 0; i < opt.bind_mount_sources.size(); i++) { const std::string& source = opt.bind_mount_sources.at(i); const std::string& target = opt.bind_mount_targets.at(i); PRINT_DEBUG("bind mount: %s -> %s", source.c_str(), target.c_str()); if (mount(source.c_str(), target.c_str(), nullptr, MS_BIND, nullptr) < 0) { DIE("mount(%s, %s, nullptr, MS_BIND, nullptr)", source.c_str(), target.c_str()); } } for (const std::string &writable_file : opt.writable_files) { PRINT_DEBUG("writable: %s", writable_file.c_str()); if (mount(writable_file.c_str(), writable_file.c_str(), nullptr, MS_BIND | MS_REC, nullptr) < 0) { DIE("mount(%s, %s, nullptr, MS_BIND | MS_REC, nullptr)", writable_file.c_str(), writable_file.c_str()); } } } // We later remount everything read-only, except the paths for which this method // returns true. static bool ShouldBeWritable(const std::string &mnt_dir) { if (mnt_dir == opt.working_dir) { return true; } for (const std::string &writable_file : opt.writable_files) { if (mnt_dir == writable_file) { return true; } } for (const std::string &tmpfs_dir : opt.tmpfs_dirs) { if (mnt_dir == tmpfs_dir) { return true; } } return false; } // Makes the whole filesystem read-only, except for the paths for which // ShouldBeWritable returns true. static void MakeFilesystemMostlyReadOnly() { FILE *mounts = setmntent("/proc/self/mounts", "r"); if (mounts == nullptr) { DIE("setmntent"); } struct mntent *ent; while ((ent = getmntent(mounts)) != nullptr) { int mountFlags = MS_BIND | MS_REMOUNT; // MS_REMOUNT does not allow us to change certain flags. This means, we have // to first read them out and then pass them in back again. There seems to // be no better way than this (an API for just getting the mount flags of a // mount entry as a bitmask would be great). if (hasmntopt(ent, "nodev") != nullptr) { mountFlags |= MS_NODEV; } if (hasmntopt(ent, "noexec") != nullptr) { mountFlags |= MS_NOEXEC; } if (hasmntopt(ent, "nosuid") != nullptr) { mountFlags |= MS_NOSUID; } if (hasmntopt(ent, "noatime") != nullptr) { mountFlags |= MS_NOATIME; } if (hasmntopt(ent, "nodiratime") != nullptr) { mountFlags |= MS_NODIRATIME; } if (hasmntopt(ent, "relatime") != nullptr) { mountFlags |= MS_RELATIME; } if (!ShouldBeWritable(ent->mnt_dir)) { mountFlags |= MS_RDONLY; } PRINT_DEBUG("remount %s: %s", (mountFlags & MS_RDONLY) ? "ro" : "rw", ent->mnt_dir); if (mount(nullptr, ent->mnt_dir, nullptr, mountFlags, nullptr) < 0) { // If we get EACCES or EPERM, this might be a mount-point for which we // don't have read access. Not much we can do about this, but it also // won't do any harm, so let's go on. The same goes for EINVAL or ENOENT, // which are fired in case a later mount overlaps an earlier mount, e.g. // consider the case of /proc, /proc/sys/fs/binfmt_misc and /proc, with // the latter /proc being the one that an outer sandbox has mounted on // top of its parent /proc. In that case, we're not allowed to remount // /proc/sys/fs/binfmt_misc, because it is hidden. If we get ESTALE, the // mount is a broken NFS mount. In the ideal case, the user would either // fix or remove that mount, but in cases where that's not possible, we // should just ignore it. if (errno != EACCES && errno != EPERM && errno != EINVAL && errno != ENOENT && errno != ESTALE) { DIE("remount(nullptr, %s, nullptr, %d, nullptr)", ent->mnt_dir, mountFlags); } } } endmntent(mounts); } static void MountProc() { // Mount a new proc on top of the old one, because the old one still refers to // our parent PID namespace. if (mount("/proc", "/proc", "proc", MS_NODEV | MS_NOEXEC | MS_NOSUID, nullptr) < 0) { DIE("mount"); } } static void SetupNetworking() { // When running in a separate network namespace, enable the loopback interface // because some application may want to use it. if (opt.create_netns) { int fd; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { DIE("socket"); } struct ifreq ifr = {}; strncpy(ifr.ifr_name, "lo", IF_NAMESIZE); // Verify that name is valid. if (if_nametoindex(ifr.ifr_name) == 0) { DIE("if_nametoindex"); } // Enable the interface. ifr.ifr_flags |= IFF_UP; if (ioctl(fd, SIOCSIFFLAGS, &ifr) < 0) { DIE("ioctl"); } if (close(fd) < 0) { DIE("close"); } } } static void EnterSandbox() { if (chdir(opt.working_dir.c_str()) < 0) { DIE("chdir(%s)", opt.working_dir.c_str()); } } // Reset the signal mask and restore the default handler for all signals. static void RestoreSignalHandlersAndMask() { // Use an empty signal mask for the process (= unblock all signals). sigset_t empty_set; if (sigemptyset(&empty_set) < 0) { DIE("sigemptyset"); } if (sigprocmask(SIG_SETMASK, &empty_set, nullptr) < 0) { DIE("sigprocmask(SIG_SETMASK, , nullptr)"); } // Set the default signal handler for all signals. struct sigaction sa = {}; if (sigemptyset(&sa.sa_mask) < 0) { DIE("sigemptyset"); } sa.sa_handler = SIG_DFL; for (int i = 1; i < NSIG; ++i) { // Ignore possible errors, because we might not be allowed to set the // handler for certain signals, but we still want to try. sigaction(i, &sa, nullptr); } } static void ForwardSignal(int signum) { PRINT_DEBUG("ForwardSignal(%d)", signum); kill(-global_child_pid, signum); } static void SetupSignalHandlers() { RestoreSignalHandlersAndMask(); for (int signum = 1; signum < NSIG; signum++) { switch (signum) { // Some signals should indeed kill us and not be forwarded to the child, // thus we can use the default handler. case SIGABRT: case SIGBUS: case SIGFPE: case SIGILL: case SIGSEGV: case SIGSYS: case SIGTRAP: break; // It's fine to use the default handler for SIGCHLD, because we use // waitpid() in the main loop to wait for children to die anyway. case SIGCHLD: break; // One does not simply install a signal handler for these two signals case SIGKILL: case SIGSTOP: break; // Ignore SIGTTIN and SIGTTOU, as we hand off the terminal to the child in // SpawnChild(). case SIGTTIN: case SIGTTOU: IgnoreSignal(signum); break; // All other signals should be forwarded to the child. default: InstallSignalHandler(signum, ForwardSignal); break; } } } static void SpawnChild() { global_child_pid = fork(); if (global_child_pid < 0) { DIE("fork()"); } else if (global_child_pid == 0) { // Put the child into its own process group. if (setpgid(0, 0) < 0) { DIE("setpgid"); } // Try to assign our terminal to the child process. if (tcsetpgrp(STDIN_FILENO, getpgrp()) < 0 && errno != ENOTTY) { DIE("tcsetpgrp") } // Unblock all signals, restore default handlers. RestoreSignalHandlersAndMask(); // Force umask to include read and execute for everyone, to make output // permissions predictable. umask(022); // argv[] passed to execve() must be a null-terminated array. opt.args.push_back(nullptr); if (execvp(opt.args[0], opt.args.data()) < 0) { DIE("execvp(%s, %p)", opt.args[0], opt.args.data()); } } } static void WaitForChild() { while (1) { // Check for zombies to be reaped and exit, if our own child exited. int status; pid_t killed_pid = waitpid(-1, &status, 0); PRINT_DEBUG("waitpid returned %d", killed_pid); if (killed_pid < 0) { // Our PID1 process got a signal that interrupted the waitpid() call and // that was either ignored or forwared to the child. This is expected & // fine, just continue waiting. if (errno == EINTR) { continue; } DIE("waitpid") } else { if (killed_pid == global_child_pid) { // If the child process we spawned earlier terminated, we'll also // terminate. We can simply _exit() here, because the Linux kernel will // kindly SIGKILL all remaining processes in our PID namespace once we // exit. if (WIFSIGNALED(status)) { PRINT_DEBUG("child died due to signal %d", WTERMSIG(status)); _exit(128 + WTERMSIG(status)); } else { PRINT_DEBUG("child exited with code %d", WEXITSTATUS(status)); _exit(WEXITSTATUS(status)); } } } } } int Pid1Main(void *sync_pipe_param) { if (getpid() != 1) { DIE("Using PID namespaces, but we are not PID 1"); } SetupSelfDestruction(reinterpret_cast(sync_pipe_param)); SetupMountNamespace(); SetupUserNamespace(); if (opt.fake_hostname) { SetupUtsNamespace(); } MountFilesystems(); MakeFilesystemMostlyReadOnly(); MountProc(); SetupNetworking(); EnterSandbox(); SetupSignalHandlers(); SpawnChild(); WaitForChild(); _exit(EXIT_FAILURE); }