// Copyright 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/decoder/quantization.h" #include "src/decoder/integer_sequence_codec.h" #include #include #include #include namespace astc_codec { namespace { // Make sure that we never exceed the maximum range that we pass in. TEST(QuantizationTest, TestQuantizeMaxRange) { for (int i = kEndpointRangeMinValue; i < 256; ++i) { EXPECT_LE(QuantizeCEValueToRange(255, i), i); } for (int i = 1; i < kWeightRangeMaxValue; ++i) { EXPECT_LE(QuantizeWeightToRange(64, i), i); } } // Make sure that whenever we unquantize and requantize a value we get back // what we started with. TEST(QuantizationTest, TestReversibility) { for (auto itr = ISERangeBegin(); itr != ISERangeEnd(); itr++) { const int range = *itr; if (range <= kWeightRangeMaxValue) { for (int j = 0; j <= range; ++j) { const int q = UnquantizeWeightFromRange(j, range); EXPECT_EQ(QuantizeWeightToRange(q, range), j); } } if (range >= kEndpointRangeMinValue) { for (int j = 0; j <= range; ++j) { const int q = UnquantizeCEValueFromRange(j, range); EXPECT_EQ(QuantizeCEValueToRange(q, range), j); } } } } // Make sure that whenever we quantize a non-maximal value it gets sent to the // proper range TEST(QuantizationTest, TestQuantizationRange) { for (auto itr = ISERangeBegin(); itr != ISERangeEnd(); itr++) { const int range = *itr; if (range >= kEndpointRangeMinValue) { EXPECT_LE(QuantizeCEValueToRange(0, range), range); EXPECT_LE(QuantizeCEValueToRange(4, range), range); EXPECT_LE(QuantizeCEValueToRange(15, range), range); EXPECT_LE(QuantizeCEValueToRange(22, range), range); EXPECT_LE(QuantizeCEValueToRange(66, range), range); EXPECT_LE(QuantizeCEValueToRange(91, range), range); EXPECT_LE(QuantizeCEValueToRange(126, range), range); } if (range <= kWeightRangeMaxValue) { EXPECT_LE(QuantizeWeightToRange(0, range), range); EXPECT_LE(QuantizeWeightToRange(4, range), range); EXPECT_LE(QuantizeWeightToRange(15, range), range); EXPECT_LE(QuantizeWeightToRange(22, range), range); } } } // Make sure that whenever we unquantize a value it remains within [0, 255] TEST(QuantizationTest, TestUnquantizationRange) { EXPECT_LT(UnquantizeCEValueFromRange(2, 7), 256); EXPECT_LT(UnquantizeCEValueFromRange(7, 7), 256); EXPECT_LT(UnquantizeCEValueFromRange(39, 63), 256); EXPECT_LT(UnquantizeCEValueFromRange(66, 79), 256); EXPECT_LT(UnquantizeCEValueFromRange(91, 191), 256); EXPECT_LT(UnquantizeCEValueFromRange(126, 255), 256); EXPECT_LT(UnquantizeCEValueFromRange(255, 255), 256); EXPECT_LE(UnquantizeWeightFromRange(0, 1), 64); EXPECT_LE(UnquantizeWeightFromRange(2, 7), 64); EXPECT_LE(UnquantizeWeightFromRange(7, 7), 64); EXPECT_LE(UnquantizeWeightFromRange(29, 31), 64); } // When we quantize a value, it should use the largest quantization range that // does not exceed the desired range. TEST(QuantizationTest, TestUpperBoundRanges) { auto expected_range_itr = ISERangeBegin(); for (int desired_range = 1; desired_range < 256; ++desired_range) { if (desired_range == *(expected_range_itr + 1)) { ++expected_range_itr; } const int expected_range = *expected_range_itr; ASSERT_LE(expected_range, desired_range); if (desired_range >= kEndpointRangeMinValue) { EXPECT_EQ(QuantizeCEValueToRange(0, desired_range), QuantizeCEValueToRange(0, expected_range)); EXPECT_EQ(QuantizeCEValueToRange(208, desired_range), QuantizeCEValueToRange(208, expected_range)); EXPECT_EQ(QuantizeCEValueToRange(173, desired_range), QuantizeCEValueToRange(173, expected_range)); EXPECT_EQ(QuantizeCEValueToRange(13, desired_range), QuantizeCEValueToRange(13, expected_range)); EXPECT_EQ(QuantizeCEValueToRange(255, desired_range), QuantizeCEValueToRange(255, expected_range)); } if (desired_range <= kWeightRangeMaxValue) { EXPECT_EQ(QuantizeWeightToRange(0, desired_range), QuantizeWeightToRange(0, expected_range)); EXPECT_EQ(QuantizeWeightToRange(63, desired_range), QuantizeWeightToRange(63, expected_range)); EXPECT_EQ(QuantizeWeightToRange(12, desired_range), QuantizeWeightToRange(12, expected_range)); EXPECT_EQ(QuantizeWeightToRange(23, desired_range), QuantizeWeightToRange(23, expected_range)); } } // Make sure that we covered all the possible ranges ASSERT_EQ(std::next(expected_range_itr), ISERangeEnd()); } // Make sure that quantizing to the largest range is the identity function. TEST(QuantizationTest, TestIdentity) { for (int i = 0; i < 256; ++i) { EXPECT_EQ(QuantizeCEValueToRange(i, 255), i); } // Note: This doesn't apply to weights since there's a weird hack to convert // values from [0, 31] to [0, 64]. } // Make sure that bit quantization is monotonic with respect to the input, // since quantizing and dequantizing bits is a matter of truncation and bit // replication TEST(QuantizationTest, TestMonotonicBitPacking) { for (int num_bits = 3; num_bits < 8; ++num_bits) { const int range = (1 << num_bits) - 1; int last_quant_val = -1; for (int i = 0; i < 256; ++i) { const int quant_val = QuantizeCEValueToRange(i, range); EXPECT_LE(last_quant_val, quant_val); last_quant_val = quant_val; } // Also expect the last quantization val to be equal to the range EXPECT_EQ(last_quant_val, range); if (range <= kWeightRangeMaxValue) { last_quant_val = -1; for (int i = 0; i <= 64; ++i) { const int quant_val = QuantizeWeightToRange(i, range); EXPECT_LE(last_quant_val, quant_val); last_quant_val = quant_val; } EXPECT_EQ(last_quant_val, range); } } } // Make sure that bit quantization reflects that quantized values below the bit // replication threshold get mapped to zero TEST(QuantizationTest, TestSmallBitPacking) { for (int num_bits = 1; num_bits <= 8; ++num_bits) { const int range = (1 << num_bits) - 1; // The largest number that should map to zero is one less than half of the // smallest representation w.r.t. range. For example: if we have a range // of 7, it means that we have 3 total bits abc for quantized values. If we // unquantize to 8 bits, it means that our resulting value will be abcabcab. // Hence, we map 000 to 0 and 001 to 0b00100100 = 36. The earliest value // that should not map to zero with three bits is therefore 0b00001111 = 15. // This ends up being (1 << (8 - 3 - 1)) - 1. We don't use 0b00011111 = 31 // because this would "round up" to 1 during quantization. This value is not // necessarily the largest, but it is the largest that we can *guarantee* // should map to zero. if (range >= kEndpointRangeMinValue) { constexpr int cev_bits = 8; const int half_max_quant_bits = std::max(0, cev_bits - num_bits - 1); const int largest_cev_to_zero = (1 << half_max_quant_bits) - 1; EXPECT_EQ(QuantizeCEValueToRange(largest_cev_to_zero, range), 0) << " Largest CEV to zero: " << largest_cev_to_zero << " Range: " << range; } if (range <= kWeightRangeMaxValue) { constexpr int weight_bits = 6; const int half_max_quant_bits = std::max(0, weight_bits - num_bits - 1); const int largest_weight_to_zero = (1 << half_max_quant_bits) - 1; EXPECT_EQ(QuantizeWeightToRange(largest_weight_to_zero, range), 0) << " Largest weight to zero: " << largest_weight_to_zero << " Range: " << range; } } } // Test specific quint and trit weight encodings with values that were obtained // using the reference ASTC codec. TEST(QuantizationTest, TestSpecificQuintTritPackings) { std::vector vals = { 4, 6, 4, 6, 7, 5, 7, 5 }; std::vector quantized; // Test a quint packing std::transform( vals.begin(), vals.end(), std::back_inserter(quantized), std::bind(UnquantizeWeightFromRange, std::placeholders::_1, 9)); const std::vector quintExpected = {14, 21, 14, 21, 43, 50, 43, 50 }; EXPECT_EQ(quantized, quintExpected); // Test a trit packing std::transform( vals.begin(), vals.end(), quantized.begin(), std::bind(UnquantizeWeightFromRange, std::placeholders::_1, 11)); const std::vector tritExpected = { 5, 23, 5, 23, 41, 59, 41, 59 }; EXPECT_EQ(quantized, tritExpected); } // Make sure that we properly die when we pass in values below the minimum // allowed ranges for our quantization intervals. TEST(QuantizationDeathTest, TestInvalidMinRange) { for (int i = 0; i < kEndpointRangeMinValue; ++i) { EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(0, i), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(0, i), ""); } EXPECT_DEBUG_DEATH(QuantizeWeightToRange(0, 0), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(0, 0), ""); } // Make sure that we properly die when we pass in bogus values. TEST(QuantizationDeathTest, TestOutOfRange) { EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(-1, 10), ""); EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(256, 7), ""); EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(10000, 17), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(-1, 10), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(8, 7), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(-1000, 17), ""); EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(0, -7), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(0, -17), ""); EXPECT_DEBUG_DEATH(QuantizeCEValueToRange(0, 257), ""); EXPECT_DEBUG_DEATH(UnquantizeCEValueFromRange(0, 256), ""); EXPECT_DEBUG_DEATH(QuantizeWeightToRange(-1, 10), ""); EXPECT_DEBUG_DEATH(QuantizeWeightToRange(256, 7), ""); EXPECT_DEBUG_DEATH(QuantizeWeightToRange(10000, 17), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(-1, 10), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(8, 7), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(-1000, 17), ""); EXPECT_DEBUG_DEATH(QuantizeWeightToRange(0, -7), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(0, -17), ""); EXPECT_DEBUG_DEATH(QuantizeWeightToRange(0, 32), ""); EXPECT_DEBUG_DEATH(UnquantizeWeightFromRange(0, 64), ""); } } // namespace } // namespace astc_codec