// Copyright 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/decoder/intermediate_astc_block.h" #include "src/decoder/integer_sequence_codec.h" #include "src/base/bit_stream.h" #include "src/base/math_utils.h" #include "src/base/optional.h" #include "src/base/uint128.h" #include #include #include namespace astc_codec { namespace { constexpr int kEndpointRange_ReturnInvalidWeightDims = -1; constexpr int kEndpointRange_ReturnNotEnoughColorBits = -2; base::UInt128 PackVoidExtentBlock(uint16_t r, uint16_t g, uint16_t b, uint16_t a, std::array coords) { base::BitStream bit_sink; // Put void extent mode... bit_sink.PutBits(0xDFC, 12); // Each of the coordinates goes in 13 bits at a time. for (auto coord : coords) { assert(coord < 1 << 13); bit_sink.PutBits(coord, 13); } assert(bit_sink.Bits() == 64); // Then we add R, G, B, and A in order bit_sink.PutBits(r, 16); bit_sink.PutBits(g, 16); bit_sink.PutBits(b, 16); bit_sink.PutBits(a, 16); assert(bit_sink.Bits() == 128); base::UInt128 result; bit_sink.GetBits(128, &result); return result; } base::Optional GetEncodedWeightRange(int range, std::array* const r) { const std::array, 12> kValidRangeEncodings = {{ {{ 0, 1, 0 }}, {{ 1, 1, 0 }}, {{ 0, 0, 1 }}, {{ 1, 0, 1 }}, {{ 0, 1, 1 }}, {{ 1, 1, 1 }}, {{ 0, 1, 0 }}, {{ 1, 1, 0 }}, {{ 0, 0, 1 }}, {{ 1, 0, 1 }}, {{ 0, 1, 1 }}, {{ 1, 1, 1 }} }}; // If our range is larger than all available ranges, this is an error. const int smallest_range = kValidWeightRanges.front(); const int largest_range = kValidWeightRanges.back(); if (range < smallest_range || largest_range < range) { std::stringstream strm; strm << "Could not find block mode. Invalid weight range: " << range << " not in [" << smallest_range << ", " << largest_range << std::endl; return strm.str(); } // Find the upper bound on the range, otherwise. const auto range_iter = std::lower_bound( kValidWeightRanges.cbegin(), kValidWeightRanges.cend(), range); auto enc_iter = kValidRangeEncodings.cbegin(); enc_iter += std::distance(kValidWeightRanges.cbegin(), range_iter); *r = *enc_iter; return {}; } struct BlockModeInfo { int min_weight_grid_dim_x; int max_weight_grid_dim_x; int min_weight_grid_dim_y; int max_weight_grid_dim_y; int r0_bit_pos; int r1_bit_pos; int r2_bit_pos; int weight_grid_x_offset_bit_pos; int weight_grid_y_offset_bit_pos; bool require_single_plane_low_prec; }; constexpr int kNumBlockModes = 10; const std::array kBlockModeInfo {{ { 4, 7, 2, 5, 4, 0, 1, 7, 5, false }, // B+4 A+2 { 8, 11, 2, 5, 4, 0, 1, 7, 5, false }, // B+8 A+2 { 2, 5, 8, 11, 4, 0, 1, 5, 7, false }, // A+2 B+8 { 2, 5, 6, 7, 4, 0, 1, 5, 7, false }, // A+2 B+6 { 2, 3, 2, 5, 4, 0, 1, 7, 5, false }, // B+2 A+2 { 12, 12, 2, 5, 4, 2, 3, -1, 5, false }, // 12 A+2 { 2, 5, 12, 12, 4, 2, 3, 5, -1, false }, // A+2 12 { 6, 6, 10, 10, 4, 2, 3, -1, -1, false }, // 6 10 { 10, 10, 6, 6, 4, 2, 3, -1, -1, false }, // 10 6 { 6, 9, 6, 9, 4, 2, 3, 5, 9, true } // A+6 B+6 }}; // These are the bits that must be set for ASTC to recognize a given // block mode. They are the 1's set in table C.2.8 of the spec. const std::array kBlockModeMask = {{ 0x0, 0x4, 0x8, 0xC, 0x10C, 0x0, 0x80, 0x180, 0x1A0, 0x100 }}; static base::Optional PackBlockMode(int dim_x, int dim_y, int range, bool dual_plane, base::BitStream* const bit_sink) { // We need to set the high precision bit if our range is too high... bool high_prec = range > 7; std::array r; const auto result = GetEncodedWeightRange(range, &r); if (result) { return result; } // The high two bits of R must not be zero. If this happens then it's // an illegal encoding according to Table C.2.7 that should have gotten // caught in GetEncodedWeightRange assert((r[1] | r[2]) > 0); // Just go through the table and see if any of the modes can handle // the given dimensions. for (int mode = 0; mode < kNumBlockModes; ++mode) { const BlockModeInfo& block_mode = kBlockModeInfo[mode]; bool is_valid_mode = true; is_valid_mode &= block_mode.min_weight_grid_dim_x <= dim_x; is_valid_mode &= dim_x <= block_mode.max_weight_grid_dim_x; is_valid_mode &= block_mode.min_weight_grid_dim_y <= dim_y; is_valid_mode &= dim_y <= block_mode.max_weight_grid_dim_y; is_valid_mode &= !(block_mode.require_single_plane_low_prec && dual_plane); is_valid_mode &= !(block_mode.require_single_plane_low_prec && high_prec); if (!is_valid_mode) { continue; } // Initialize to the bits we must set. uint32_t encoded_mode = kBlockModeMask[mode]; auto setBit = [&encoded_mode](const uint32_t value, const uint32_t offset) { encoded_mode = (encoded_mode & ~(1 << offset)) | ((value & 1) << offset); }; // Set all the bits we need to set setBit(r[0], block_mode.r0_bit_pos); setBit(r[1], block_mode.r1_bit_pos); setBit(r[2], block_mode.r2_bit_pos); // Find our width and height offset from the base width and height weight // grid dimension for the given block mode. These are the 1-2 bits that // get encoded in the block mode used to calculate the final weight grid // width and height. const int offset_x = dim_x - block_mode.min_weight_grid_dim_x; const int offset_y = dim_y - block_mode.min_weight_grid_dim_y; // If we don't have an offset position then our offset better be zero. // If this isn't the case, then this isn't a viable block mode and we // should have caught this sooner. assert(block_mode.weight_grid_x_offset_bit_pos >= 0 || offset_x == 0); assert(block_mode.weight_grid_y_offset_bit_pos >= 0 || offset_y == 0); encoded_mode |= offset_x << block_mode.weight_grid_x_offset_bit_pos; encoded_mode |= offset_y << block_mode.weight_grid_y_offset_bit_pos; if (!block_mode.require_single_plane_low_prec) { setBit(high_prec, 9); setBit(dual_plane, 10); } // Make sure that the mode is the first thing the bit sink is writing to assert(bit_sink->Bits() == 0); bit_sink->PutBits(encoded_mode, 11); return {}; } return std::string("Could not find viable block mode"); } // Returns true if all endpoint modes are equal. bool SharedEndpointModes(const IntermediateBlockData& data) { return std::accumulate( data.endpoints.begin(), data.endpoints.end(), true, [&data](const bool& a, const IntermediateEndpointData& b) { return a && b.mode == data.endpoints[0].mode; }); } // Returns the starting bit (between 0 and 128) where the extra CEM and // dual plane info is stored in the ASTC block. int ExtraConfigBitPosition(const IntermediateBlockData& data) { const bool has_dual_channel = data.dual_plane_channel.hasValue(); const int num_weights = data.weight_grid_dim_x * data.weight_grid_dim_y * (has_dual_channel ? 2 : 1); const int num_weight_bits = IntegerSequenceCodec::GetBitCountForRange(num_weights, data.weight_range); int extra_config_bits = 0; if (!SharedEndpointModes(data)) { const int num_encoded_cem_bits = 2 + data.endpoints.size() * 3; extra_config_bits = num_encoded_cem_bits - 6; } if (has_dual_channel) { extra_config_bits += 2; } return 128 - num_weight_bits - extra_config_bits; } } // namespace //////////////////////////////////////////////////////////////////////////////// base::Optional UnpackIntermediateBlock( const PhysicalASTCBlock& pb) { if (pb.IsIllegalEncoding()) { return {}; } if (pb.IsVoidExtent()) { return {}; } // Non void extent? Then let's try to decode everything else. IntermediateBlockData data; // All blocks have color values... const base::UInt128 color_bits_mask = (base::UInt128(1) << pb.NumColorBits().value()) - 1; const base::UInt128 color_bits = (pb.GetBlockBits() >> pb.ColorStartBit().value()) & color_bits_mask; base::BitStream bit_src(color_bits, 128); IntegerSequenceDecoder color_decoder(pb.ColorValuesRange().value()); const int num_colors_in_block = pb.NumColorValues().value(); std::vector colors = color_decoder.Decode(num_colors_in_block, &bit_src); // Decode simple info const auto weight_dims = pb.WeightGridDims(); data.weight_grid_dim_x = weight_dims->at(0); data.weight_grid_dim_y = weight_dims->at(1); data.weight_range = pb.WeightRange().value(); data.partition_id = pb.PartitionID(); data.dual_plane_channel = pb.DualPlaneChannel(); auto colors_iter = colors.begin(); for (int i = 0; i < pb.NumPartitions().value(); ++i) { IntermediateEndpointData ep_data; ep_data.mode = pb.GetEndpointMode(i).value(); const int num_colors = NumColorValuesForEndpointMode(ep_data.mode); ep_data.colors.insert(ep_data.colors.end(), colors_iter, colors_iter + num_colors); colors_iter += num_colors; data.endpoints.push_back(ep_data); } assert(colors_iter == colors.end()); data.endpoint_range = pb.ColorValuesRange().value(); // Finally decode the weights const base::UInt128 weight_bits_mask = (base::UInt128(1) << pb.NumWeightBits().value()) - 1; const base::UInt128 weight_bits = base::ReverseBits(pb.GetBlockBits()) & weight_bits_mask; bit_src = base::BitStream(weight_bits, 128); IntegerSequenceDecoder weight_decoder(data.weight_range); int num_weights = data.weight_grid_dim_x * data.weight_grid_dim_y; num_weights *= pb.IsDualPlane() ? 2 : 1; data.weights = weight_decoder.Decode(num_weights, &bit_src); return data; } int EndpointRangeForBlock(const IntermediateBlockData& data) { // First check to see if we exceed the number of bits allotted for weights, as // specified in C.2.24. If so, then the endpoint range is meaningless, but not // because we had an overzealous color endpoint mode, so return a different // error code. if (IntegerSequenceCodec::GetBitCountForRange( data.weight_grid_dim_x * data.weight_grid_dim_y * (data.dual_plane_channel.hasValue() ? 2 : 1), data.weight_range) > 96) { return kEndpointRange_ReturnInvalidWeightDims; } const int num_partitions = data.endpoints.size(); // Calculate the number of bits that we would write prior to getting to the // color endpoint data const int bits_written = 11 // Block mode + 2 // Num partitions + ((num_partitions > 1) ? 10 : 0) // Partition ID + ((num_partitions == 1) ? 4 : 6); // Shared CEM bits // We can determine the range based on how many bits we have between the start // of the color endpoint data and the next section, which is the extra config // bit position const int color_bits_available = ExtraConfigBitPosition(data) - bits_written; int num_color_values = 0; for (const auto& ep_data : data.endpoints) { num_color_values += NumColorValuesForEndpointMode(ep_data.mode); } // There's no way any valid ASTC encoding has no room left for any color // values. If we hit this then something is wrong in the caller -- abort. // According to section C.2.24, the smallest number of bits available is // ceil(13*C/5), where C is the number of color endpoint integers needed. const int bits_needed = (13 * num_color_values + 4) / 5; if (color_bits_available < bits_needed) { return kEndpointRange_ReturnNotEnoughColorBits; } int color_value_range = 255; for (; color_value_range > 1; --color_value_range) { const int bits_for_range = IntegerSequenceCodec::GetBitCountForRange( num_color_values, color_value_range); if (bits_for_range <= color_bits_available) { break; } } return color_value_range; } base::Optional UnpackVoidExtent(const PhysicalASTCBlock& pb) { if (pb.IsIllegalEncoding()) { return {}; } if (!pb.IsVoidExtent()) { return {}; } // All blocks have color values... const base::UInt128 color_bits_mask = (base::UInt128(1) << pb.NumColorBits().value()) - 1; const uint64_t color_bits = ( (pb.GetBlockBits() >> pb.ColorStartBit().value()) & color_bits_mask).LowBits(); assert(pb.NumColorValues().value() == 4); VoidExtentData data; data.r = static_cast((color_bits >> 0) & 0xFFFF); data.g = static_cast((color_bits >> 16) & 0xFFFF); data.b = static_cast((color_bits >> 32) & 0xFFFF); data.a = static_cast((color_bits >> 48) & 0xFFFF); const auto void_extent_coords = pb.VoidExtentCoords(); if (void_extent_coords) { data.coords[0] = void_extent_coords->at(0); data.coords[1] = void_extent_coords->at(1); data.coords[2] = void_extent_coords->at(2); data.coords[3] = void_extent_coords->at(3); } else { uint16_t all_ones = (1 << 13) - 1; for (auto& coord : data.coords) { coord = all_ones; } } return data; } // Packs the given intermediate block into a physical block. Returns false if // the provided values in the intermediate block emit an illegal ASTC // encoding. base::Optional Pack(const IntermediateBlockData& data, base::UInt128* pb) { if (data.weights.size() != data.weight_grid_dim_x * data.weight_grid_dim_y * (data.dual_plane_channel.hasValue() ? 2 : 1)) { return std::string("Incorrect number of weights!"); } // If it's not a void extent block, then it gets a bit more tricky... base::BitStream bit_sink; // First we need to encode the block mode. const auto error_string = PackBlockMode( data.weight_grid_dim_x, data.weight_grid_dim_y, data.weight_range, data.dual_plane_channel.hasValue(), &bit_sink); if (error_string) { return error_string; } // Next, we place the number of partitions minus one. const int num_partitions = data.endpoints.size(); bit_sink.PutBits(num_partitions - 1, 2); // If we have more than one partition, then we also have a partition ID. if (num_partitions > 1) { const int id = data.partition_id.value(); assert(id >= 0); bit_sink.PutBits(id, 10); } // Take a detour, let's encode the weights so that we know how many bits they // consume. base::BitStream weight_sink; IntegerSequenceEncoder weight_enc(data.weight_range); for (auto weight : data.weights) { weight_enc.AddValue(weight); } weight_enc.Encode(&weight_sink); const int num_weight_bits = weight_sink.Bits(); assert(num_weight_bits == IntegerSequenceCodec::GetBitCountForRange( data.weights.size(), data.weight_range)); // Let's continue... how much after the color data do we need to write? int extra_config = 0; // Determine if all endpoint pairs share the same endpoint mode assert(data.endpoints.size() > 0); bool shared_endpoint_mode = SharedEndpointModes(data); // The first part of the endpoint mode (CEM) comes directly after the // partition info, if it exists. If there is no partition info, the CEM comes // right after the block mode. In the single-partition case, we just write out // the entire singular CEM, but in the multi-partition case, if all CEMs are // the same then their shared CEM is specified directly here, too. In both // cases, shared_endpoint_mode is true (in the singular case, // shared_endpoint_mode is trivially true). if (shared_endpoint_mode) { if (num_partitions > 1) { bit_sink.PutBits(0, 2); } bit_sink.PutBits(static_cast(data.endpoints[0].mode), 4); } else { // Here, the CEM is not shared across all endpoint pairs, and we need to // figure out what to place here, and what to place in the extra config // bits before the weight data... // Non-shared config modes must all be within the same class (out of four) // See Section C.2.11 int min_class = 2; // We start with 2 here instead of three because it's // the highest that can be encoded -- even if all modes // are class 3. int max_class = 0; for (const auto& ep_data : data.endpoints) { const int ep_mode_class = static_cast(ep_data.mode) >> 2; min_class = std::min(min_class, ep_mode_class); max_class = std::max(max_class, ep_mode_class); } assert(max_class >= min_class); if (max_class - min_class > 1) { return std::string("Endpoint modes are invalid"); } // Construct the CEM mode -- six of its bits will fit here, but otherwise // the rest will go in the extra configuration bits. base::BitStream cem_encoder; // First encode the base class assert(min_class >= 0); assert(min_class < 3); cem_encoder.PutBits(min_class + 1, 2); // Next, encode the class selector bits -- this is simply the offset // from the base class for (const auto& ep_data : data.endpoints) { const int ep_mode_class = static_cast(ep_data.mode) >> 2; const int class_selector_bit = ep_mode_class - min_class; assert(class_selector_bit == 0 || class_selector_bit == 1); cem_encoder.PutBits(class_selector_bit, 1); } // Finally, we need to choose from each class which actual mode // we belong to and encode those. for (const auto& ep_data : data.endpoints) { const int ep_mode = static_cast(ep_data.mode) & 3; assert(ep_mode < 4); cem_encoder.PutBits(ep_mode, 2); } assert(cem_encoder.Bits() == 2 + num_partitions * 3); uint32_t encoded_cem; cem_encoder.GetBits(2 + num_partitions * 3, &encoded_cem); // Since only six bits fit here before the color endpoint data, the rest // need to go in the extra config data. extra_config = encoded_cem >> 6; // Write out the six bits we had bit_sink.PutBits(encoded_cem, 6); } // If we have a dual-plane channel, we can tack that onto our extra config // data if (data.dual_plane_channel.hasValue()) { const int channel = data.dual_plane_channel.value(); assert(channel < 4); extra_config <<= 2; extra_config |= channel; } // Get the range of endpoint values. It can't be -1 because we should have // checked for that much earlier. const int color_value_range = data.endpoint_range ? data.endpoint_range.value() : EndpointRangeForBlock(data); assert(color_value_range != kEndpointRange_ReturnInvalidWeightDims); if (color_value_range == kEndpointRange_ReturnNotEnoughColorBits) { return { "Intermediate block emits illegal color range" }; } IntegerSequenceEncoder color_enc(color_value_range); for (const auto& ep_data : data.endpoints) { for (int color : ep_data.colors) { if (color > color_value_range) { return { "Color outside available color range!" }; } color_enc.AddValue(color); } } color_enc.Encode(&bit_sink); // Now we need to skip some bits to get to the extra configuration bits. The // number of bits we need to skip depends on where we are in the stream and // where we need to get to. const int extra_config_bit_position = ExtraConfigBitPosition(data); const int extra_config_bits = 128 - num_weight_bits - extra_config_bit_position; assert(extra_config_bits >= 0); assert(extra_config < 1 << extra_config_bits); // Make sure the color encoder didn't write more than we thought it would. int bits_to_skip = extra_config_bit_position - bit_sink.Bits(); assert(bits_to_skip >= 0); while (bits_to_skip > 0) { const int skipping = std::min(32, bits_to_skip); bit_sink.PutBits(0, skipping); bits_to_skip -= skipping; } // Finally, write out the rest of the config bits. bit_sink.PutBits(extra_config, extra_config_bits); // We should be right up to the weight bits... assert(bit_sink.Bits() == 128 - num_weight_bits); // Flush out our bit writer and write out the weight bits base::UInt128 astc_bits; bit_sink.GetBits(128 - num_weight_bits, &astc_bits); base::UInt128 rev_weight_bits; weight_sink.GetBits(weight_sink.Bits(), &rev_weight_bits); astc_bits |= base::ReverseBits(rev_weight_bits); // And we're done! Whew! *pb = astc_bits; return PhysicalASTCBlock(*pb).IsIllegalEncoding(); } base::Optional Pack(const VoidExtentData& data, base::UInt128* pb) { *pb = PackVoidExtentBlock(data.r, data.g, data.b, data.a, data.coords); return PhysicalASTCBlock(*pb).IsIllegalEncoding(); } } // namespace astc_codec