// Copyright 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/decoder/integer_sequence_codec.h" #include "src/base/math_utils.h" #include "src/base/utils.h" #include #include namespace astc_codec { namespace { // Tables of trit and quint encodings generated by the implementation in // http://cs/aosp-master/external/skia/src/utils/SkTextureCompressor_ASTC.cpp // // These tables are used to decode the blocks of values encoded using the ASTC // integer sequence encoding. The theory is that five trits (values that can // take any number in the range [0, 2]) can take on a total of 3^5 = 243 total // values, which can be stored in eight bits. These eight bits are used to // decode the five trits based on the ASTC specification in Section C.2.12. // For simplicity, we have stored a look-up table here so that we don't need // to implement the decoding logic. Similarly, seven bits are used to decode // three quints (since 5^3 = 125 < 128). static const std::array kTritEncodings[256] = { {{ 0, 0, 0, 0, 0 }}, {{ 1, 0, 0, 0, 0 }}, {{ 2, 0, 0, 0, 0 }}, {{ 0, 0, 2, 0, 0 }}, {{ 0, 1, 0, 0, 0 }}, {{ 1, 1, 0, 0, 0 }}, {{ 2, 1, 0, 0, 0 }}, {{ 1, 0, 2, 0, 0 }}, {{ 0, 2, 0, 0, 0 }}, {{ 1, 2, 0, 0, 0 }}, {{ 2, 2, 0, 0, 0 }}, {{ 2, 0, 2, 0, 0 }}, {{ 0, 2, 2, 0, 0 }}, {{ 1, 2, 2, 0, 0 }}, {{ 2, 2, 2, 0, 0 }}, {{ 2, 0, 2, 0, 0 }}, {{ 0, 0, 1, 0, 0 }}, {{ 1, 0, 1, 0, 0 }}, {{ 2, 0, 1, 0, 0 }}, {{ 0, 1, 2, 0, 0 }}, {{ 0, 1, 1, 0, 0 }}, {{ 1, 1, 1, 0, 0 }}, {{ 2, 1, 1, 0, 0 }}, {{ 1, 1, 2, 0, 0 }}, {{ 0, 2, 1, 0, 0 }}, {{ 1, 2, 1, 0, 0 }}, {{ 2, 2, 1, 0, 0 }}, {{ 2, 1, 2, 0, 0 }}, {{ 0, 0, 0, 2, 2 }}, {{ 1, 0, 0, 2, 2 }}, {{ 2, 0, 0, 2, 2 }}, {{ 0, 0, 2, 2, 2 }}, {{ 0, 0, 0, 1, 0 }}, {{ 1, 0, 0, 1, 0 }}, {{ 2, 0, 0, 1, 0 }}, {{ 0, 0, 2, 1, 0 }}, {{ 0, 1, 0, 1, 0 }}, {{ 1, 1, 0, 1, 0 }}, {{ 2, 1, 0, 1, 0 }}, {{ 1, 0, 2, 1, 0 }}, {{ 0, 2, 0, 1, 0 }}, {{ 1, 2, 0, 1, 0 }}, {{ 2, 2, 0, 1, 0 }}, {{ 2, 0, 2, 1, 0 }}, {{ 0, 2, 2, 1, 0 }}, {{ 1, 2, 2, 1, 0 }}, {{ 2, 2, 2, 1, 0 }}, {{ 2, 0, 2, 1, 0 }}, {{ 0, 0, 1, 1, 0 }}, {{ 1, 0, 1, 1, 0 }}, {{ 2, 0, 1, 1, 0 }}, {{ 0, 1, 2, 1, 0 }}, {{ 0, 1, 1, 1, 0 }}, {{ 1, 1, 1, 1, 0 }}, {{ 2, 1, 1, 1, 0 }}, {{ 1, 1, 2, 1, 0 }}, {{ 0, 2, 1, 1, 0 }}, {{ 1, 2, 1, 1, 0 }}, {{ 2, 2, 1, 1, 0 }}, {{ 2, 1, 2, 1, 0 }}, {{ 0, 1, 0, 2, 2 }}, {{ 1, 1, 0, 2, 2 }}, {{ 2, 1, 0, 2, 2 }}, {{ 1, 0, 2, 2, 2 }}, {{ 0, 0, 0, 2, 0 }}, {{ 1, 0, 0, 2, 0 }}, {{ 2, 0, 0, 2, 0 }}, {{ 0, 0, 2, 2, 0 }}, {{ 0, 1, 0, 2, 0 }}, {{ 1, 1, 0, 2, 0 }}, {{ 2, 1, 0, 2, 0 }}, {{ 1, 0, 2, 2, 0 }}, {{ 0, 2, 0, 2, 0 }}, {{ 1, 2, 0, 2, 0 }}, {{ 2, 2, 0, 2, 0 }}, {{ 2, 0, 2, 2, 0 }}, {{ 0, 2, 2, 2, 0 }}, {{ 1, 2, 2, 2, 0 }}, {{ 2, 2, 2, 2, 0 }}, {{ 2, 0, 2, 2, 0 }}, {{ 0, 0, 1, 2, 0 }}, {{ 1, 0, 1, 2, 0 }}, {{ 2, 0, 1, 2, 0 }}, {{ 0, 1, 2, 2, 0 }}, {{ 0, 1, 1, 2, 0 }}, {{ 1, 1, 1, 2, 0 }}, {{ 2, 1, 1, 2, 0 }}, {{ 1, 1, 2, 2, 0 }}, {{ 0, 2, 1, 2, 0 }}, {{ 1, 2, 1, 2, 0 }}, {{ 2, 2, 1, 2, 0 }}, {{ 2, 1, 2, 2, 0 }}, {{ 0, 2, 0, 2, 2 }}, {{ 1, 2, 0, 2, 2 }}, {{ 2, 2, 0, 2, 2 }}, {{ 2, 0, 2, 2, 2 }}, {{ 0, 0, 0, 0, 2 }}, {{ 1, 0, 0, 0, 2 }}, {{ 2, 0, 0, 0, 2 }}, {{ 0, 0, 2, 0, 2 }}, {{ 0, 1, 0, 0, 2 }}, {{ 1, 1, 0, 0, 2 }}, {{ 2, 1, 0, 0, 2 }}, {{ 1, 0, 2, 0, 2 }}, {{ 0, 2, 0, 0, 2 }}, {{ 1, 2, 0, 0, 2 }}, {{ 2, 2, 0, 0, 2 }}, {{ 2, 0, 2, 0, 2 }}, {{ 0, 2, 2, 0, 2 }}, {{ 1, 2, 2, 0, 2 }}, {{ 2, 2, 2, 0, 2 }}, {{ 2, 0, 2, 0, 2 }}, {{ 0, 0, 1, 0, 2 }}, {{ 1, 0, 1, 0, 2 }}, {{ 2, 0, 1, 0, 2 }}, {{ 0, 1, 2, 0, 2 }}, {{ 0, 1, 1, 0, 2 }}, {{ 1, 1, 1, 0, 2 }}, {{ 2, 1, 1, 0, 2 }}, {{ 1, 1, 2, 0, 2 }}, {{ 0, 2, 1, 0, 2 }}, {{ 1, 2, 1, 0, 2 }}, {{ 2, 2, 1, 0, 2 }}, {{ 2, 1, 2, 0, 2 }}, {{ 0, 2, 2, 2, 2 }}, {{ 1, 2, 2, 2, 2 }}, {{ 2, 2, 2, 2, 2 }}, {{ 2, 0, 2, 2, 2 }}, {{ 0, 0, 0, 0, 1 }}, {{ 1, 0, 0, 0, 1 }}, {{ 2, 0, 0, 0, 1 }}, {{ 0, 0, 2, 0, 1 }}, {{ 0, 1, 0, 0, 1 }}, {{ 1, 1, 0, 0, 1 }}, {{ 2, 1, 0, 0, 1 }}, {{ 1, 0, 2, 0, 1 }}, {{ 0, 2, 0, 0, 1 }}, {{ 1, 2, 0, 0, 1 }}, {{ 2, 2, 0, 0, 1 }}, {{ 2, 0, 2, 0, 1 }}, {{ 0, 2, 2, 0, 1 }}, {{ 1, 2, 2, 0, 1 }}, {{ 2, 2, 2, 0, 1 }}, {{ 2, 0, 2, 0, 1 }}, {{ 0, 0, 1, 0, 1 }}, {{ 1, 0, 1, 0, 1 }}, {{ 2, 0, 1, 0, 1 }}, {{ 0, 1, 2, 0, 1 }}, {{ 0, 1, 1, 0, 1 }}, {{ 1, 1, 1, 0, 1 }}, {{ 2, 1, 1, 0, 1 }}, {{ 1, 1, 2, 0, 1 }}, {{ 0, 2, 1, 0, 1 }}, {{ 1, 2, 1, 0, 1 }}, {{ 2, 2, 1, 0, 1 }}, {{ 2, 1, 2, 0, 1 }}, {{ 0, 0, 1, 2, 2 }}, {{ 1, 0, 1, 2, 2 }}, {{ 2, 0, 1, 2, 2 }}, {{ 0, 1, 2, 2, 2 }}, {{ 0, 0, 0, 1, 1 }}, {{ 1, 0, 0, 1, 1 }}, {{ 2, 0, 0, 1, 1 }}, {{ 0, 0, 2, 1, 1 }}, {{ 0, 1, 0, 1, 1 }}, {{ 1, 1, 0, 1, 1 }}, {{ 2, 1, 0, 1, 1 }}, {{ 1, 0, 2, 1, 1 }}, {{ 0, 2, 0, 1, 1 }}, {{ 1, 2, 0, 1, 1 }}, {{ 2, 2, 0, 1, 1 }}, {{ 2, 0, 2, 1, 1 }}, {{ 0, 2, 2, 1, 1 }}, {{ 1, 2, 2, 1, 1 }}, {{ 2, 2, 2, 1, 1 }}, {{ 2, 0, 2, 1, 1 }}, {{ 0, 0, 1, 1, 1 }}, {{ 1, 0, 1, 1, 1 }}, {{ 2, 0, 1, 1, 1 }}, {{ 0, 1, 2, 1, 1 }}, {{ 0, 1, 1, 1, 1 }}, {{ 1, 1, 1, 1, 1 }}, {{ 2, 1, 1, 1, 1 }}, {{ 1, 1, 2, 1, 1 }}, {{ 0, 2, 1, 1, 1 }}, {{ 1, 2, 1, 1, 1 }}, {{ 2, 2, 1, 1, 1 }}, {{ 2, 1, 2, 1, 1 }}, {{ 0, 1, 1, 2, 2 }}, {{ 1, 1, 1, 2, 2 }}, {{ 2, 1, 1, 2, 2 }}, {{ 1, 1, 2, 2, 2 }}, {{ 0, 0, 0, 2, 1 }}, {{ 1, 0, 0, 2, 1 }}, {{ 2, 0, 0, 2, 1 }}, {{ 0, 0, 2, 2, 1 }}, {{ 0, 1, 0, 2, 1 }}, {{ 1, 1, 0, 2, 1 }}, {{ 2, 1, 0, 2, 1 }}, {{ 1, 0, 2, 2, 1 }}, {{ 0, 2, 0, 2, 1 }}, {{ 1, 2, 0, 2, 1 }}, {{ 2, 2, 0, 2, 1 }}, {{ 2, 0, 2, 2, 1 }}, {{ 0, 2, 2, 2, 1 }}, {{ 1, 2, 2, 2, 1 }}, {{ 2, 2, 2, 2, 1 }}, {{ 2, 0, 2, 2, 1 }}, {{ 0, 0, 1, 2, 1 }}, {{ 1, 0, 1, 2, 1 }}, {{ 2, 0, 1, 2, 1 }}, {{ 0, 1, 2, 2, 1 }}, {{ 0, 1, 1, 2, 1 }}, {{ 1, 1, 1, 2, 1 }}, {{ 2, 1, 1, 2, 1 }}, {{ 1, 1, 2, 2, 1 }}, {{ 0, 2, 1, 2, 1 }}, {{ 1, 2, 1, 2, 1 }}, {{ 2, 2, 1, 2, 1 }}, {{ 2, 1, 2, 2, 1 }}, {{ 0, 2, 1, 2, 2 }}, {{ 1, 2, 1, 2, 2 }}, {{ 2, 2, 1, 2, 2 }}, {{ 2, 1, 2, 2, 2 }}, {{ 0, 0, 0, 1, 2 }}, {{ 1, 0, 0, 1, 2 }}, {{ 2, 0, 0, 1, 2 }}, {{ 0, 0, 2, 1, 2 }}, {{ 0, 1, 0, 1, 2 }}, {{ 1, 1, 0, 1, 2 }}, {{ 2, 1, 0, 1, 2 }}, {{ 1, 0, 2, 1, 2 }}, {{ 0, 2, 0, 1, 2 }}, {{ 1, 2, 0, 1, 2 }}, {{ 2, 2, 0, 1, 2 }}, {{ 2, 0, 2, 1, 2 }}, {{ 0, 2, 2, 1, 2 }}, {{ 1, 2, 2, 1, 2 }}, {{ 2, 2, 2, 1, 2 }}, {{ 2, 0, 2, 1, 2 }}, {{ 0, 0, 1, 1, 2 }}, {{ 1, 0, 1, 1, 2 }}, {{ 2, 0, 1, 1, 2 }}, {{ 0, 1, 2, 1, 2 }}, {{ 0, 1, 1, 1, 2 }}, {{ 1, 1, 1, 1, 2 }}, {{ 2, 1, 1, 1, 2 }}, {{ 1, 1, 2, 1, 2 }}, {{ 0, 2, 1, 1, 2 }}, {{ 1, 2, 1, 1, 2 }}, {{ 2, 2, 1, 1, 2 }}, {{ 2, 1, 2, 1, 2 }}, {{ 0, 2, 2, 2, 2 }}, {{ 1, 2, 2, 2, 2 }}, {{ 2, 2, 2, 2, 2 }}, {{ 2, 1, 2, 2, 2 }} }; static const std::array kQuintEncodings[128] = { {{ 0, 0, 0 }}, {{ 1, 0, 0 }}, {{ 2, 0, 0 }}, {{ 3, 0, 0 }}, {{ 4, 0, 0 }}, {{ 0, 4, 0 }}, {{ 4, 4, 0 }}, {{ 4, 4, 4 }}, {{ 0, 1, 0 }}, {{ 1, 1, 0 }}, {{ 2, 1, 0 }}, {{ 3, 1, 0 }}, {{ 4, 1, 0 }}, {{ 1, 4, 0 }}, {{ 4, 4, 1 }}, {{ 4, 4, 4 }}, {{ 0, 2, 0 }}, {{ 1, 2, 0 }}, {{ 2, 2, 0 }}, {{ 3, 2, 0 }}, {{ 4, 2, 0 }}, {{ 2, 4, 0 }}, {{ 4, 4, 2 }}, {{ 4, 4, 4 }}, {{ 0, 3, 0 }}, {{ 1, 3, 0 }}, {{ 2, 3, 0 }}, {{ 3, 3, 0 }}, {{ 4, 3, 0 }}, {{ 3, 4, 0 }}, {{ 4, 4, 3 }}, {{ 4, 4, 4 }}, {{ 0, 0, 1 }}, {{ 1, 0, 1 }}, {{ 2, 0, 1 }}, {{ 3, 0, 1 }}, {{ 4, 0, 1 }}, {{ 0, 4, 1 }}, {{ 4, 0, 4 }}, {{ 0, 4, 4 }}, {{ 0, 1, 1 }}, {{ 1, 1, 1 }}, {{ 2, 1, 1 }}, {{ 3, 1, 1 }}, {{ 4, 1, 1 }}, {{ 1, 4, 1 }}, {{ 4, 1, 4 }}, {{ 1, 4, 4 }}, {{ 0, 2, 1 }}, {{ 1, 2, 1 }}, {{ 2, 2, 1 }}, {{ 3, 2, 1 }}, {{ 4, 2, 1 }}, {{ 2, 4, 1 }}, {{ 4, 2, 4 }}, {{ 2, 4, 4 }}, {{ 0, 3, 1 }}, {{ 1, 3, 1 }}, {{ 2, 3, 1 }}, {{ 3, 3, 1 }}, {{ 4, 3, 1 }}, {{ 3, 4, 1 }}, {{ 4, 3, 4 }}, {{ 3, 4, 4 }}, {{ 0, 0, 2 }}, {{ 1, 0, 2 }}, {{ 2, 0, 2 }}, {{ 3, 0, 2 }}, {{ 4, 0, 2 }}, {{ 0, 4, 2 }}, {{ 2, 0, 4 }}, {{ 3, 0, 4 }}, {{ 0, 1, 2 }}, {{ 1, 1, 2 }}, {{ 2, 1, 2 }}, {{ 3, 1, 2 }}, {{ 4, 1, 2 }}, {{ 1, 4, 2 }}, {{ 2, 1, 4 }}, {{ 3, 1, 4 }}, {{ 0, 2, 2 }}, {{ 1, 2, 2 }}, {{ 2, 2, 2 }}, {{ 3, 2, 2 }}, {{ 4, 2, 2 }}, {{ 2, 4, 2 }}, {{ 2, 2, 4 }}, {{ 3, 2, 4 }}, {{ 0, 3, 2 }}, {{ 1, 3, 2 }}, {{ 2, 3, 2 }}, {{ 3, 3, 2 }}, {{ 4, 3, 2 }}, {{ 3, 4, 2 }}, {{ 2, 3, 4 }}, {{ 3, 3, 4 }}, {{ 0, 0, 3 }}, {{ 1, 0, 3 }}, {{ 2, 0, 3 }}, {{ 3, 0, 3 }}, {{ 4, 0, 3 }}, {{ 0, 4, 3 }}, {{ 0, 0, 4 }}, {{ 1, 0, 4 }}, {{ 0, 1, 3 }}, {{ 1, 1, 3 }}, {{ 2, 1, 3 }}, {{ 3, 1, 3 }}, {{ 4, 1, 3 }}, {{ 1, 4, 3 }}, {{ 0, 1, 4 }}, {{ 1, 1, 4 }}, {{ 0, 2, 3 }}, {{ 1, 2, 3 }}, {{ 2, 2, 3 }}, {{ 3, 2, 3 }}, {{ 4, 2, 3 }}, {{ 2, 4, 3 }}, {{ 0, 2, 4 }}, {{ 1, 2, 4 }}, {{ 0, 3, 3 }}, {{ 1, 3, 3 }}, {{ 2, 3, 3 }}, {{ 3, 3, 3 }}, {{ 4, 3, 3 }}, {{ 3, 4, 3 }}, {{ 0, 3, 4 }}, {{ 1, 3, 4 }} }; // A cached table containing the max ranges for values encoded using ASTC's // Bounded Integer Sequence Encoding. These are the numbers between 1 and 255 // that can be represented exactly as a number in the ranges // [0, 2^k), [0, 3 * 2^k), and [0, 5 * 2^k). static const std::array kMaxRanges = []() { std::array ranges; // Initialize the table that we need for determining value encodings. auto next_max_range = ranges.begin(); auto add_val = [&next_max_range](int val) { if (val <= 0 || (1 << kLog2MaxRangeForBits) <= val) { return; } *(next_max_range++) = val; }; for (int i = 0; i <= kLog2MaxRangeForBits; ++i) { add_val(3 * (1 << i) - 1); add_val(5 * (1 << i) - 1); add_val((1 << i) - 1); } assert(std::distance(next_max_range, ranges.end()) == 0); std::sort(ranges.begin(), ranges.end()); return ranges; }(); // Returns true if x == 0 or if x is a power of two. This function is only used // in the GetCountsForRange function, where we need to have it return true // on zero since we can have single trit/quint ISE encodings according to // Table C.2.7. template::value, T>::type = 0> inline constexpr bool IsPow2(T x) { return (x & (x - 1)) == 0; } // For the ISE block encoding, these arrays determine how many bits are // used after each value to store the interleaved quint/trit block. const int kInterleavedQuintBits[3] = { 3, 2, 2 }; const int kInterleavedTritBits[5] = { 2, 2, 1, 2, 1 }; // Some template meta programming to get around the fact that MSVC // will not allow (ValRange == 5) ? 3 : 5 as a template parameter template struct DecodeBlockSize { enum { value = (ValRange == 5 ? 3 : 5) }; }; // Decodes either a trit or quint block using the BISE (Bounded Integer Sequence // Encoding) defined in Section C.2.12 of the ASTC specification. ValRange is // expected to be either 3 or 5 depending on whether or not we're encoding trits // or quints respectively. In other words, it is the remaining factor in whether // the passed blocks contain encoded values of the form 3*2^k or 5*2^k. template std::array::value> DecodeISEBlock( uint64_t block_bits, int num_bits) { static_assert(ValRange == 3 || ValRange == 5, "We only know about trits and quints"); // We either have three quints or five trits constexpr const int kNumVals = (ValRange == 5) ? 3 : 5; // Depending on whether or not we're using quints or trits will determine // the positions of the interleaved bits in the encoded block. constexpr const int* const kInterleavedBits = (ValRange == 5) ? kInterleavedQuintBits : kInterleavedTritBits; // Set up the bits for reading base::BitStream block_bit_src(block_bits, sizeof(block_bits) * 8); // Decode the block std::array m; uint64_t encoded = 0; uint32_t encoded_bits_read = 0; for (int i = 0; i < kNumVals; ++i) { { uint64_t bits = 0; const bool result = block_bit_src.GetBits(num_bits, &bits); assert(result); m[i] = static_cast(bits); } uint64_t encoded_bits; { const bool result = block_bit_src.GetBits(kInterleavedBits[i], &encoded_bits); assert(result); } encoded |= encoded_bits << encoded_bits_read; encoded_bits_read += kInterleavedBits[i]; } // Make sure that our encoded trit/quint doesn't exceed its bounds assert(ValRange != 3 || encoded < 256); assert(ValRange != 5 || encoded < 128); const int* const kEncodings = (ValRange == 5) ? kQuintEncodings[encoded].data() : kTritEncodings[encoded].data(); std::array result; for (int i = 0; i < kNumVals; ++i) { assert(m[i] < 1 << num_bits); result[i] = kEncodings[i] << num_bits | m[i]; } return result; } // Encode a single trit or quint block using the BISE (Bounded Integer Sequence // Encoding) defined in Section C.2.12 of the ASTC specification. ValRange is // expected to be either 3 or 5 depending on whether or not we're encoding trits // or quints respectively. In other words, it is the remaining factor in whether // the passed blocks contain encoded values of the form 3*2^k or 5*2^k. template void EncodeISEBlock(const std::vector& vals, int bits_per_val, base::BitStream* bit_sink) { static_assert(ValRange == 3 || ValRange == 5, "We only know about trits and quints"); // We either have three quints or five trits constexpr const int kNumVals = (ValRange == 5) ? 3 : 5; // Three quints in seven bits or five trits in eight bits constexpr const int kNumEncodedBitsPerBlock = (ValRange == 5) ? 7 : 8; // Depending on whether or not we're using quints or trits will determine // the positions of the interleaved bits in the encoding constexpr const int* const kInterleavedBits = (ValRange == 5) ? kInterleavedQuintBits : kInterleavedTritBits; // ISE blocks can only have up to a specific number of values... assert(vals.size() <= kNumVals); // Split up into bits and non bits. Non bits are used to find the quint/trit // encoding that we need. std::array non_bits = {{ 0 }}; std::array bits = {{ 0 }}; for (size_t i = 0; i < vals.size(); ++i) { bits[i] = vals[i] & ((1 << bits_per_val) - 1); non_bits[i] = vals[i] >> bits_per_val; assert(non_bits[i] < ValRange); } // We only need to add as many bits as necessary, so let's limit it based // on the computation described in Section C.2.22 of the ASTC specification const int total_num_bits = ((vals.size() * kNumEncodedBitsPerBlock + kNumVals - 1) / kNumVals) + vals.size() * bits_per_val; int bits_added = 0; // The number of bits used for the quint/trit encoding is necessary to know // in order to properly select the encoding we need to represent. int num_encoded_bits = 0; for (int i = 0; i < kNumVals; ++i) { bits_added += bits_per_val; if (bits_added >= total_num_bits) { break; } num_encoded_bits += kInterleavedBits[i]; bits_added += kInterleavedBits[i]; if (bits_added >= total_num_bits) { break; } } bits_added = 0; assert(num_encoded_bits <= kNumEncodedBitsPerBlock); // TODO(google): The faster way to do this would be to construct trees out // of the quint/trit encoding patterns, or just invert the decoding logic. // Here we go from the end backwards because it makes our tests are more // deterministic. int non_bit_encoding = -1; for (int j = (1 << num_encoded_bits) - 1; j >= 0; --j) { bool matches = true; // We don't need to match all trits here, just the ones that correspond // to the values that we passed in for (size_t i = 0; i < kNumVals; ++i) { if ((ValRange == 5 && kQuintEncodings[j][i] != non_bits[i]) || (ValRange == 3 && kTritEncodings[j][i] != non_bits[i])) { matches = false; break; } } if (matches) { non_bit_encoding = j; break; } } assert(non_bit_encoding >= 0); // Now pack the bits into the block for (int i = 0; i < vals.size(); ++i) { // First add the base bits for this value if (bits_added + bits_per_val <= total_num_bits) { bit_sink->PutBits(bits[i], bits_per_val); bits_added += bits_per_val; } // Now add the interleaved bits from the quint/trit int num_int_bits = kInterleavedBits[i]; int int_bits = non_bit_encoding & ((1 << num_int_bits) - 1); if (bits_added + num_int_bits <= total_num_bits) { bit_sink->PutBits(int_bits, num_int_bits); bits_added += num_int_bits; non_bit_encoding >>= num_int_bits; } } } inline void CHECK_COUNTS(int trits, int quints) { assert(trits == 0 || quints == 0); // Either trits or quints assert(trits == 0 || trits == 1); // At most one trit assert(quints == 0 || quints == 1); // At most one quint } } // namespace //////////////////////////////////////////////////////////////////////////////// std::array::const_iterator ISERangeBegin() { return kMaxRanges.cbegin(); } std::array::const_iterator ISERangeEnd() { return kMaxRanges.cend(); } void IntegerSequenceCodec::GetCountsForRange( int range, int* const trits, int* const quints, int* const bits) { // Make sure the passed pointers are valid assert(trits != nullptr); assert(quints != nullptr); assert(bits != nullptr); // These are generally errors -- there should never be any ASTC values // outside of this range UTILS_RELEASE_ASSERT(range > 0); UTILS_RELEASE_ASSERT(range < 1 << kLog2MaxRangeForBits); *bits = 0; *trits = 0; *quints = 0; // Search through the numbers of the form 2^n, 3 * 2^n and 5 * 2^n const int max_vals_for_range = *std::lower_bound(kMaxRanges.begin(), kMaxRanges.end(), range) + 1; // Make sure we found something assert(max_vals_for_range > 1); // Find out what kind of range it is if ((max_vals_for_range % 3 == 0) && IsPow2(max_vals_for_range / 3)) { *bits = base::Log2Floor(max_vals_for_range / 3); *trits = 1; *quints = 0; } else if ((max_vals_for_range % 5 == 0) && IsPow2(max_vals_for_range / 5)) { *bits = base::Log2Floor(max_vals_for_range / 5); *trits = 0; *quints = 1; } else if (IsPow2(max_vals_for_range)) { *bits = base::Log2Floor(max_vals_for_range); *trits = 0; *quints = 0; } // If we set any of these values then we're done. if ((*bits | *trits | *quints) != 0) { CHECK_COUNTS(*trits, *quints); } } // Returns the overall bit count for a range of val_count values encoded // using the specified number of trits, quints and straight bits (respectively) int IntegerSequenceCodec::GetBitCount(int num_vals, int trits, int quints, int bits) { CHECK_COUNTS(trits, quints); // See section C.2.22 for the formula used here. const int trit_bit_count = ((num_vals * 8 * trits) + 4) / 5; const int quint_bit_count = ((num_vals * 7 * quints) + 2) / 3; const int base_bit_count = num_vals * bits; return trit_bit_count + quint_bit_count + base_bit_count; } IntegerSequenceCodec::IntegerSequenceCodec(int range) { int trits, quints, bits; GetCountsForRange(range, &trits, &quints, &bits); InitializeWithCounts(trits, quints, bits); } IntegerSequenceCodec::IntegerSequenceCodec( int trits, int quints, int bits) { InitializeWithCounts(trits, quints, bits); } void IntegerSequenceCodec::InitializeWithCounts( int trits, int quints, int bits) { CHECK_COUNTS(trits, quints); if (trits > 0) { encoding_ = EncodingMode::kTritEncoding; } else if (quints > 0) { encoding_ = EncodingMode::kQuintEncoding; } else { encoding_ = EncodingMode::kBitEncoding; } bits_ = bits; } int IntegerSequenceCodec::NumValsPerBlock() const { const std::array kNumValsByEncoding = {{ 5, 3, 1 }}; return kNumValsByEncoding[static_cast(encoding_)]; } int IntegerSequenceCodec::EncodedBlockSize() const { const std::array kExtraBlockSizeByEncoding = {{ 8, 7, 0 }}; const int num_vals = NumValsPerBlock(); return kExtraBlockSizeByEncoding[static_cast(encoding_)] + num_vals * bits_; } std::vector IntegerSequenceDecoder::Decode( int num_vals, base::BitStream *bit_src) const { int trits = (encoding_ == kTritEncoding)? 1 : 0; int quints = (encoding_ == kQuintEncoding)? 1 : 0; const int total_num_bits = GetBitCount(num_vals, trits, quints, bits_); const int bits_per_block = EncodedBlockSize(); assert(bits_per_block < 64); int bits_left = total_num_bits; std::vector result; while (bits_left > 0) { uint64_t block_bits; { const bool result = bit_src->GetBits(std::min(bits_left, bits_per_block), &block_bits); assert(result); } switch (encoding_) { case kTritEncoding: { auto trit_vals = DecodeISEBlock<3>(block_bits, bits_); result.insert(result.end(), trit_vals.begin(), trit_vals.end()); } break; case kQuintEncoding: { auto quint_vals = DecodeISEBlock<5>(block_bits, bits_); result.insert(result.end(), quint_vals.begin(), quint_vals.end()); } break; case kBitEncoding: result.push_back(static_cast(block_bits)); break; } bits_left -= bits_per_block; } // Resize result to only contain as many values as requested assert(result.size() >= static_cast(num_vals)); result.resize(num_vals); // Encoded all the values return result; } void IntegerSequenceEncoder::Encode(base::BitStream* bit_sink) const { // Go through all of the values and chop them up into blocks. The properties // of the trit and quint encodings mean that if we need to encode fewer values // in a block than the number of values encoded in the block then we need to // consider the last few values to be zero. auto next_val = vals_.begin(); while (next_val != vals_.end()) { switch (encoding_) { case kTritEncoding: { std::vector trit_vals; for (int i = 0; i < 5; ++i) { if (next_val != vals_.end()) { trit_vals.push_back(*next_val); ++next_val; } } EncodeISEBlock<3>(trit_vals, bits_, bit_sink); } break; case kQuintEncoding: { std::vector quint_vals; for (int i = 0; i < 3; ++i) { if (next_val != vals_.end()) { quint_vals.push_back(*next_val); ++next_val; } } EncodeISEBlock<5>(quint_vals, bits_, bit_sink); } break; case kBitEncoding: { bit_sink->PutBits(*next_val, EncodedBlockSize()); ++next_val; } break; } } } } // namespace astc_codec