// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // This header file contains C++11 versions of standard header // abstractions available within C++14 and C++17, and are designed to be drop-in // replacement for code compliant with C++14 and C++17. // // The following abstractions are defined: // // * integer_sequence == std::integer_sequence // * index_sequence == std::index_sequence // * make_integer_sequence == std::make_integer_sequence // * make_index_sequence == std::make_index_sequence // * index_sequence_for == std::index_sequence_for // * apply == std::apply // * exchange == std::exchange // * make_from_tuple == std::make_from_tuple // // This header file also provides the tag types `in_place_t`, `in_place_type_t`, // and `in_place_index_t`, as well as the constant `in_place`, and // `constexpr` `std::move()` and `std::forward()` implementations in C++11. // // References: // // https://en.cppreference.com/w/cpp/utility/integer_sequence // https://en.cppreference.com/w/cpp/utility/apply // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3658.html #ifndef ABSL_UTILITY_UTILITY_H_ #define ABSL_UTILITY_UTILITY_H_ #include #include #include #include #include "absl/base/config.h" #include "absl/base/internal/inline_variable.h" #include "absl/base/internal/invoke.h" #include "absl/meta/type_traits.h" namespace absl { // integer_sequence // // Class template representing a compile-time integer sequence. An instantiation // of `integer_sequence` has a sequence of integers encoded in its // type through its template arguments (which is a common need when // working with C++11 variadic templates). `absl::integer_sequence` is designed // to be a drop-in replacement for C++14's `std::integer_sequence`. // // Example: // // template< class T, T... Ints > // void user_function(integer_sequence); // // int main() // { // // user_function's `T` will be deduced to `int` and `Ints...` // // will be deduced to `0, 1, 2, 3, 4`. // user_function(make_integer_sequence()); // } template struct integer_sequence { using value_type = T; static constexpr size_t size() noexcept { return sizeof...(Ints); } }; // index_sequence // // A helper template for an `integer_sequence` of `size_t`, // `absl::index_sequence` is designed to be a drop-in replacement for C++14's // `std::index_sequence`. template using index_sequence = integer_sequence; namespace utility_internal { template struct Extend; // Note that SeqSize == sizeof...(Ints). It's passed explicitly for efficiency. template struct Extend, SeqSize, 0> { using type = integer_sequence; }; template struct Extend, SeqSize, 1> { using type = integer_sequence; }; // Recursion helper for 'make_integer_sequence'. // 'Gen::type' is an alias for 'integer_sequence'. template struct Gen { using type = typename Extend::type, N / 2, N % 2>::type; }; template struct Gen { using type = integer_sequence; }; template struct InPlaceTypeTag { explicit InPlaceTypeTag() = delete; InPlaceTypeTag(const InPlaceTypeTag&) = delete; InPlaceTypeTag& operator=(const InPlaceTypeTag&) = delete; }; template struct InPlaceIndexTag { explicit InPlaceIndexTag() = delete; InPlaceIndexTag(const InPlaceIndexTag&) = delete; InPlaceIndexTag& operator=(const InPlaceIndexTag&) = delete; }; } // namespace utility_internal // Compile-time sequences of integers // make_integer_sequence // // This template alias is equivalent to // `integer_sequence`, and is designed to be a drop-in // replacement for C++14's `std::make_integer_sequence`. template using make_integer_sequence = typename utility_internal::Gen::type; // make_index_sequence // // This template alias is equivalent to `index_sequence<0, 1, ..., N-1>`, // and is designed to be a drop-in replacement for C++14's // `std::make_index_sequence`. template using make_index_sequence = make_integer_sequence; // index_sequence_for // // Converts a typename pack into an index sequence of the same length, and // is designed to be a drop-in replacement for C++14's // `std::index_sequence_for()` template using index_sequence_for = make_index_sequence; // Tag types #ifdef ABSL_USES_STD_OPTIONAL using std::in_place_t; using std::in_place; #else // ABSL_USES_STD_OPTIONAL // in_place_t // // Tag type used to specify in-place construction, such as with // `absl::optional`, designed to be a drop-in replacement for C++17's // `std::in_place_t`. struct in_place_t {}; ABSL_INTERNAL_INLINE_CONSTEXPR(in_place_t, in_place, {}); #endif // ABSL_USES_STD_OPTIONAL #if defined(ABSL_USES_STD_ANY) || defined(ABSL_USES_STD_VARIANT) using std::in_place_type; using std::in_place_type_t; #else // in_place_type_t // // Tag type used for in-place construction when the type to construct needs to // be specified, such as with `absl::any`, designed to be a drop-in replacement // for C++17's `std::in_place_type_t`. template using in_place_type_t = void (*)(utility_internal::InPlaceTypeTag); template void in_place_type(utility_internal::InPlaceTypeTag) {} #endif // ABSL_USES_STD_ANY || ABSL_USES_STD_VARIANT #ifdef ABSL_USES_STD_VARIANT using std::in_place_index; using std::in_place_index_t; #else // in_place_index_t // // Tag type used for in-place construction when the type to construct needs to // be specified, such as with `absl::any`, designed to be a drop-in replacement // for C++17's `std::in_place_index_t`. template using in_place_index_t = void (*)(utility_internal::InPlaceIndexTag); template void in_place_index(utility_internal::InPlaceIndexTag) {} #endif // ABSL_USES_STD_VARIANT // Constexpr move and forward // move() // // A constexpr version of `std::move()`, designed to be a drop-in replacement // for C++14's `std::move()`. template constexpr absl::remove_reference_t&& move(T&& t) noexcept { return static_cast&&>(t); } // forward() // // A constexpr version of `std::forward()`, designed to be a drop-in replacement // for C++14's `std::forward()`. template constexpr T&& forward( absl::remove_reference_t& t) noexcept { // NOLINT(runtime/references) return static_cast(t); } namespace utility_internal { // Helper method for expanding tuple into a called method. template auto apply_helper(Functor&& functor, Tuple&& t, index_sequence) -> decltype(absl::base_internal::Invoke( absl::forward(functor), std::get(absl::forward(t))...)) { return absl::base_internal::Invoke( absl::forward(functor), std::get(absl::forward(t))...); } } // namespace utility_internal // apply // // Invokes a Callable using elements of a tuple as its arguments. // Each element of the tuple corresponds to an argument of the call (in order). // Both the Callable argument and the tuple argument are perfect-forwarded. // For member-function Callables, the first tuple element acts as the `this` // pointer. `absl::apply` is designed to be a drop-in replacement for C++17's // `std::apply`. Unlike C++17's `std::apply`, this is not currently `constexpr`. // // Example: // // class Foo { // public: // void Bar(int); // }; // void user_function1(int, std::string); // void user_function2(std::unique_ptr); // auto user_lambda = [](int, int) {}; // // int main() // { // std::tuple tuple1(42, "bar"); // // Invokes the first user function on int, std::string. // absl::apply(&user_function1, tuple1); // // std::tuple> tuple2(absl::make_unique()); // // Invokes the user function that takes ownership of the unique // // pointer. // absl::apply(&user_function2, std::move(tuple2)); // // auto foo = absl::make_unique(); // std::tuple tuple3(foo.get(), 42); // // Invokes the method Bar on foo with one argument, 42. // absl::apply(&Foo::Bar, tuple3); // // std::tuple tuple4(8, 9); // // Invokes a lambda. // absl::apply(user_lambda, tuple4); // } template auto apply(Functor&& functor, Tuple&& t) -> decltype(utility_internal::apply_helper( absl::forward(functor), absl::forward(t), absl::make_index_sequence::type>::value>{})) { return utility_internal::apply_helper( absl::forward(functor), absl::forward(t), absl::make_index_sequence::type>::value>{}); } // exchange // // Replaces the value of `obj` with `new_value` and returns the old value of // `obj`. `absl::exchange` is designed to be a drop-in replacement for C++14's // `std::exchange`. // // Example: // // Foo& operator=(Foo&& other) { // ptr1_ = absl::exchange(other.ptr1_, nullptr); // int1_ = absl::exchange(other.int1_, -1); // return *this; // } template T exchange(T& obj, U&& new_value) { T old_value = absl::move(obj); obj = absl::forward(new_value); return old_value; } namespace utility_internal { template T make_from_tuple_impl(Tuple&& tup, absl::index_sequence) { return T(std::get(std::forward(tup))...); } } // namespace utility_internal // make_from_tuple // // Given the template parameter type `T` and a tuple of arguments // `std::tuple(arg0, arg1, ..., argN)` constructs an object of type `T` as if by // calling `T(arg0, arg1, ..., argN)`. // // Example: // // std::tuple args("hello world", 5); // auto s = absl::make_from_tuple(args); // assert(s == "hello"); // template constexpr T make_from_tuple(Tuple&& tup) { return utility_internal::make_from_tuple_impl( std::forward(tup), absl::make_index_sequence< std::tuple_size>::value>{}); } } // namespace absl #endif // ABSL_UTILITY_UTILITY_H_