// Copyright 2016 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // This file implements the TimeZoneIf interface using the "zoneinfo" // data provided by the IANA Time Zone Database (i.e., the only real game // in town). // // TimeZoneInfo represents the history of UTC-offset changes within a time // zone. Most changes are due to daylight-saving rules, but occasionally // shifts are made to the time-zone's base offset. The database only attempts // to be definitive for times since 1970, so be wary of local-time conversions // before that. Also, rule and zone-boundary changes are made at the whim // of governments, so the conversion of future times needs to be taken with // a grain of salt. // // For more information see tzfile(5), http://www.iana.org/time-zones, or // https://en.wikipedia.org/wiki/Zoneinfo. // // Note that we assume the proleptic Gregorian calendar and 60-second // minutes throughout. #include "time_zone_info.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "absl/base/config.h" #include "absl/time/internal/cctz/include/cctz/civil_time.h" #include "time_zone_fixed.h" #include "time_zone_posix.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace time_internal { namespace cctz { namespace { inline bool IsLeap(year_t year) { return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0); } // The number of days in non-leap and leap years respectively. const std::int_least32_t kDaysPerYear[2] = {365, 366}; // The day offsets of the beginning of each (1-based) month in non-leap and // leap years respectively (e.g., 335 days before December in a leap year). const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = { {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}, }; // We reject leap-second encoded zoneinfo and so assume 60-second minutes. const std::int_least32_t kSecsPerDay = 24 * 60 * 60; // 400-year chunks always have 146097 days (20871 weeks). const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay; // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay. const std::int_least32_t kSecsPerYear[2] = { 365 * kSecsPerDay, 366 * kSecsPerDay, }; // Single-byte, unsigned numeric values are encoded directly. inline std::uint_fast8_t Decode8(const char* cp) { return static_cast(*cp) & 0xff; } // Multi-byte, numeric values are encoded using a MSB first, // twos-complement representation. These helpers decode, from // the given address, 4-byte and 8-byte values respectively. // Note: If int_fastXX_t == intXX_t and this machine is not // twos complement, then there will be at least one input value // we cannot represent. std::int_fast32_t Decode32(const char* cp) { std::uint_fast32_t v = 0; for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++); const std::int_fast32_t s32max = 0x7fffffff; const auto s32maxU = static_cast(s32max); if (v <= s32maxU) return static_cast(v); return static_cast(v - s32maxU - 1) - s32max - 1; } std::int_fast64_t Decode64(const char* cp) { std::uint_fast64_t v = 0; for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++); const std::int_fast64_t s64max = 0x7fffffffffffffff; const auto s64maxU = static_cast(s64max); if (v <= s64maxU) return static_cast(v); return static_cast(v - s64maxU - 1) - s64max - 1; } // Generate a year-relative offset for a PosixTransition. std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday, const PosixTransition& pt) { std::int_fast64_t days = 0; switch (pt.date.fmt) { case PosixTransition::J: { days = pt.date.j.day; if (!leap_year || days < kMonthOffsets[1][3]) days -= 1; break; } case PosixTransition::N: { days = pt.date.n.day; break; } case PosixTransition::M: { const bool last_week = (pt.date.m.week == 5); days = kMonthOffsets[leap_year][pt.date.m.month + last_week]; const std::int_fast64_t weekday = (jan1_weekday + days) % 7; if (last_week) { days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1; } else { days += (pt.date.m.weekday + 7 - weekday) % 7; days += (pt.date.m.week - 1) * 7; } break; } } return (days * kSecsPerDay) + pt.time.offset; } inline time_zone::civil_lookup MakeUnique(const time_point& tp) { time_zone::civil_lookup cl; cl.kind = time_zone::civil_lookup::UNIQUE; cl.pre = cl.trans = cl.post = tp; return cl; } inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) { return MakeUnique(FromUnixSeconds(unix_time)); } inline time_zone::civil_lookup MakeSkipped(const Transition& tr, const civil_second& cs) { time_zone::civil_lookup cl; cl.kind = time_zone::civil_lookup::SKIPPED; cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec)); cl.trans = FromUnixSeconds(tr.unix_time); cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs)); return cl; } inline time_zone::civil_lookup MakeRepeated(const Transition& tr, const civil_second& cs) { time_zone::civil_lookup cl; cl.kind = time_zone::civil_lookup::REPEATED; cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs)); cl.trans = FromUnixSeconds(tr.unix_time); cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec)); return cl; } inline civil_second YearShift(const civil_second& cs, year_t shift) { return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(), cs.minute(), cs.second()); } } // namespace // What (no leap-seconds) UTC+seconds zoneinfo would look like. bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) { transition_types_.resize(1); TransitionType& tt(transition_types_.back()); tt.utc_offset = static_cast(offset.count()); tt.is_dst = false; tt.abbr_index = 0; // We temporarily add some redundant, contemporary (2013 through 2023) // transitions for performance reasons. See TimeZoneInfo::LocalTime(). // TODO: Fix the performance issue and remove the extra transitions. transitions_.clear(); transitions_.reserve(12); for (const std::int_fast64_t unix_time : { -(1LL << 59), // BIG_BANG 1356998400LL, // 2013-01-01T00:00:00+00:00 1388534400LL, // 2014-01-01T00:00:00+00:00 1420070400LL, // 2015-01-01T00:00:00+00:00 1451606400LL, // 2016-01-01T00:00:00+00:00 1483228800LL, // 2017-01-01T00:00:00+00:00 1514764800LL, // 2018-01-01T00:00:00+00:00 1546300800LL, // 2019-01-01T00:00:00+00:00 1577836800LL, // 2020-01-01T00:00:00+00:00 1609459200LL, // 2021-01-01T00:00:00+00:00 1640995200LL, // 2022-01-01T00:00:00+00:00 1672531200LL, // 2023-01-01T00:00:00+00:00 2147483647LL, // 2^31 - 1 }) { Transition& tr(*transitions_.emplace(transitions_.end())); tr.unix_time = unix_time; tr.type_index = 0; tr.civil_sec = LocalTime(tr.unix_time, tt).cs; tr.prev_civil_sec = tr.civil_sec - 1; } default_transition_type_ = 0; abbreviations_ = FixedOffsetToAbbr(offset); abbreviations_.append(1, '\0'); // add NUL future_spec_.clear(); // never needed for a fixed-offset zone extended_ = false; tt.civil_max = LocalTime(seconds::max().count(), tt).cs; tt.civil_min = LocalTime(seconds::min().count(), tt).cs; transitions_.shrink_to_fit(); return true; } // Builds the in-memory header using the raw bytes from the file. bool TimeZoneInfo::Header::Build(const tzhead& tzh) { std::int_fast32_t v; if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false; timecnt = static_cast(v); if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false; typecnt = static_cast(v); if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false; charcnt = static_cast(v); if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false; leapcnt = static_cast(v); if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false; ttisstdcnt = static_cast(v); if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false; ttisutcnt = static_cast(v); return true; } // How many bytes of data are associated with this header. The result // depends upon whether this is a section with 4-byte or 8-byte times. std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const { std::size_t len = 0; len += (time_len + 1) * timecnt; // unix_time + type_index len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index len += 1 * charcnt; // abbreviations len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC len += 1 * ttisstdcnt; // UTC/local indicators len += 1 * ttisutcnt; // standard/wall indicators return len; } // Check that the TransitionType has the expected offset/is_dst/abbreviation. void TimeZoneInfo::CheckTransition(const std::string& name, const TransitionType& tt, std::int_fast32_t offset, bool is_dst, const std::string& abbr) const { if (tt.utc_offset != offset || tt.is_dst != is_dst || &abbreviations_[tt.abbr_index] != abbr) { std::clog << name << ": Transition" << " offset=" << tt.utc_offset << "/" << (tt.is_dst ? "DST" : "STD") << "/abbr=" << &abbreviations_[tt.abbr_index] << " does not match POSIX spec '" << future_spec_ << "'\n"; } } // zic(8) can generate no-op transitions when a zone changes rules at an // instant when there is actually no discontinuity. So we check whether // two transitions have equivalent types (same offset/is_dst/abbr). bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index, std::uint_fast8_t tt2_index) const { if (tt1_index == tt2_index) return true; const TransitionType& tt1(transition_types_[tt1_index]); const TransitionType& tt2(transition_types_[tt2_index]); if (tt1.is_dst != tt2.is_dst) return false; if (tt1.utc_offset != tt2.utc_offset) return false; if (tt1.abbr_index != tt2.abbr_index) return false; return true; } // Use the POSIX-TZ-environment-variable-style string to handle times // in years after the last transition stored in the zoneinfo data. void TimeZoneInfo::ExtendTransitions(const std::string& name, const Header& hdr) { extended_ = false; bool extending = !future_spec_.empty(); PosixTimeZone posix; if (extending && !ParsePosixSpec(future_spec_, &posix)) { std::clog << name << ": Failed to parse '" << future_spec_ << "'\n"; extending = false; } if (extending && posix.dst_abbr.empty()) { // std only // The future specification should match the last/default transition, // and that means that handling the future will fall out naturally. std::uint_fast8_t index = default_transition_type_; if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index; const TransitionType& tt(transition_types_[index]); CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr); extending = false; } if (extending && hdr.timecnt < 2) { std::clog << name << ": Too few transitions for POSIX spec\n"; extending = false; } if (!extending) { // Ensure that there is always a transition in the second half of the // time line (the BIG_BANG transition is in the first half) so that the // signed difference between a civil_second and the civil_second of its // previous transition is always representable, without overflow. const Transition& last(transitions_.back()); if (last.unix_time < 0) { const std::uint_fast8_t type_index = last.type_index; Transition& tr(*transitions_.emplace(transitions_.end())); tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00 tr.type_index = type_index; } return; // last transition wins } // Extend the transitions for an additional 400 years using the // future specification. Years beyond those can be handled by // mapping back to a cycle-equivalent year within that range. // zic(8) should probably do this so that we don't have to. // TODO: Reduce the extension by the number of compatible // transitions already in place. transitions_.reserve(hdr.timecnt + 400 * 2 + 1); transitions_.resize(hdr.timecnt + 400 * 2); extended_ = true; // The future specification should match the last two transitions, // and those transitions should have different is_dst flags. Note // that nothing says the UTC offset used by the is_dst transition // must be greater than that used by the !is_dst transition. (See // Europe/Dublin, for example.) const Transition* tr0 = &transitions_[hdr.timecnt - 1]; const Transition* tr1 = &transitions_[hdr.timecnt - 2]; const TransitionType* tt0 = &transition_types_[tr0->type_index]; const TransitionType* tt1 = &transition_types_[tr1->type_index]; const TransitionType& dst(tt0->is_dst ? *tt0 : *tt1); const TransitionType& std(tt0->is_dst ? *tt1 : *tt0); CheckTransition(name, dst, posix.dst_offset, true, posix.dst_abbr); CheckTransition(name, std, posix.std_offset, false, posix.std_abbr); // Add the transitions to tr1 and back to tr0 for each extra year. last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year(); bool leap_year = IsLeap(last_year_); const civil_day jan1(last_year_, 1, 1); std::int_fast64_t jan1_time = civil_second(jan1) - civil_second(); int jan1_weekday = (static_cast(get_weekday(jan1)) + 1) % 7; Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) { // Add a single extra transition to align to a calendar year. transitions_.resize(transitions_.size() + 1); assert(tr == &transitions_[hdr.timecnt]); // no reallocation const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; tr++->type_index = tr1->type_index; tr0 = &transitions_[hdr.timecnt]; tr1 = &transitions_[hdr.timecnt - 1]; tt0 = &transition_types_[tr0->type_index]; tt1 = &transition_types_[tr1->type_index]; } const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end); for (const year_t limit = last_year_ + 400; last_year_ < limit;) { last_year_ += 1; // an additional year of generated transitions jan1_time += kSecsPerYear[leap_year]; jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7; leap_year = !leap_year && IsLeap(last_year_); std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; tr++->type_index = tr1->type_index; std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0); tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset; tr++->type_index = tr0->type_index; } assert(tr == &transitions_[0] + transitions_.size()); } bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) { // Read and validate the header. tzhead tzh; if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false; if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) return false; Header hdr; if (!hdr.Build(tzh)) return false; std::size_t time_len = 4; if (tzh.tzh_version[0] != '\0') { // Skip the 4-byte data. if (zip->Skip(hdr.DataLength(time_len)) != 0) return false; // Read and validate the header for the 8-byte data. if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false; if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) return false; if (tzh.tzh_version[0] == '\0') return false; if (!hdr.Build(tzh)) return false; time_len = 8; } if (hdr.typecnt == 0) return false; if (hdr.leapcnt != 0) { // This code assumes 60-second minutes so we do not want // the leap-second encoded zoneinfo. We could reverse the // compensation, but the "right" encoding is rarely used // so currently we simply reject such data. return false; } if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false; if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false; // Read the data into a local buffer. std::size_t len = hdr.DataLength(time_len); std::vector tbuf(len); if (zip->Read(tbuf.data(), len) != len) return false; const char* bp = tbuf.data(); // Decode and validate the transitions. transitions_.reserve(hdr.timecnt + 2); // We might add a couple. transitions_.resize(hdr.timecnt); for (std::size_t i = 0; i != hdr.timecnt; ++i) { transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp); bp += time_len; if (i != 0) { // Check that the transitions are ordered by time (as zic guarantees). if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i])) return false; // out of order } } bool seen_type_0 = false; for (std::size_t i = 0; i != hdr.timecnt; ++i) { transitions_[i].type_index = Decode8(bp++); if (transitions_[i].type_index >= hdr.typecnt) return false; if (transitions_[i].type_index == 0) seen_type_0 = true; } // Decode and validate the transition types. transition_types_.resize(hdr.typecnt); for (std::size_t i = 0; i != hdr.typecnt; ++i) { transition_types_[i].utc_offset = static_cast(Decode32(bp)); if (transition_types_[i].utc_offset >= kSecsPerDay || transition_types_[i].utc_offset <= -kSecsPerDay) return false; bp += 4; transition_types_[i].is_dst = (Decode8(bp++) != 0); transition_types_[i].abbr_index = Decode8(bp++); if (transition_types_[i].abbr_index >= hdr.charcnt) return false; } // Determine the before-first-transition type. default_transition_type_ = 0; if (seen_type_0 && hdr.timecnt != 0) { std::uint_fast8_t index = 0; if (transition_types_[0].is_dst) { index = transitions_[0].type_index; while (index != 0 && transition_types_[index].is_dst) --index; } while (index != hdr.typecnt && transition_types_[index].is_dst) ++index; if (index != hdr.typecnt) default_transition_type_ = index; } // Copy all the abbreviations. abbreviations_.assign(bp, hdr.charcnt); bp += hdr.charcnt; // Skip the unused portions. We've already dispensed with leap-second // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when // interpreting a POSIX spec that does not include start/end rules, and // that isn't the case here (see "zic -p"). bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC bp += 1 * hdr.ttisstdcnt; // UTC/local indicators bp += 1 * hdr.ttisutcnt; // standard/wall indicators assert(bp == tbuf.data() + tbuf.size()); future_spec_.clear(); if (tzh.tzh_version[0] != '\0') { // Snarf up the NL-enclosed future POSIX spec. Note // that version '3' files utilize an extended format. auto get_char = [](ZoneInfoSource* azip) -> int { unsigned char ch; // all non-EOF results are positive return (azip->Read(&ch, 1) == 1) ? ch : EOF; }; if (get_char(zip) != '\n') return false; for (int c = get_char(zip); c != '\n'; c = get_char(zip)) { if (c == EOF) return false; future_spec_.push_back(static_cast(c)); } } // We don't check for EOF so that we're forwards compatible. // If we did not find version information during the standard loading // process (as of tzh_version '3' that is unsupported), then ask the // ZoneInfoSource for any out-of-bound version std::string it may be privy to. if (version_.empty()) { version_ = zip->Version(); } // Trim redundant transitions. zic may have added these to work around // differences between the glibc and reference implementations (see // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071). // For us, they just get in the way when we do future_spec_ extension. while (hdr.timecnt > 1) { if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index, transitions_[hdr.timecnt - 2].type_index)) { break; } hdr.timecnt -= 1; } transitions_.resize(hdr.timecnt); // Ensure that there is always a transition in the first half of the // time line (the second half is handled in ExtendTransitions()) so that // the signed difference between a civil_second and the civil_second of // its previous transition is always representable, without overflow. // A contemporary zic will usually have already done this for us. if (transitions_.empty() || transitions_.front().unix_time >= 0) { Transition& tr(*transitions_.emplace(transitions_.begin())); tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG" tr.type_index = default_transition_type_; hdr.timecnt += 1; } // Extend the transitions using the future specification. ExtendTransitions(name, hdr); // Compute the local civil time for each transition and the preceding // second. These will be used for reverse conversions in MakeTime(). const TransitionType* ttp = &transition_types_[default_transition_type_]; for (std::size_t i = 0; i != transitions_.size(); ++i) { Transition& tr(transitions_[i]); tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1; ttp = &transition_types_[tr.type_index]; tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs; if (i != 0) { // Check that the transitions are ordered by civil time. Essentially // this means that an offset change cannot cross another such change. // No one does this in practice, and we depend on it in MakeTime(). if (!Transition::ByCivilTime()(transitions_[i - 1], tr)) return false; // out of order } } // Compute the maximum/minimum civil times that can be converted to a // time_point for each of the zone's transition types. for (auto& tt : transition_types_) { tt.civil_max = LocalTime(seconds::max().count(), tt).cs; tt.civil_min = LocalTime(seconds::min().count(), tt).cs; } transitions_.shrink_to_fit(); return true; } namespace { // fopen(3) adaptor. inline FILE* FOpen(const char* path, const char* mode) { #if defined(_MSC_VER) FILE* fp; if (fopen_s(&fp, path, mode) != 0) fp = nullptr; return fp; #else return fopen(path, mode); // TODO: Enable the close-on-exec flag. #endif } // A stdio(3)-backed implementation of ZoneInfoSource. class FileZoneInfoSource : public ZoneInfoSource { public: static std::unique_ptr Open(const std::string& name); std::size_t Read(void* ptr, std::size_t size) override { size = std::min(size, len_); std::size_t nread = fread(ptr, 1, size, fp_.get()); len_ -= nread; return nread; } int Skip(std::size_t offset) override { offset = std::min(offset, len_); int rc = fseek(fp_.get(), static_cast(offset), SEEK_CUR); if (rc == 0) len_ -= offset; return rc; } std::string Version() const override { // TODO: It would nice if the zoneinfo data included the tzdb version. return std::string(); } protected: explicit FileZoneInfoSource( FILE* fp, std::size_t len = std::numeric_limits::max()) : fp_(fp, fclose), len_(len) {} private: std::unique_ptr fp_; std::size_t len_; }; std::unique_ptr FileZoneInfoSource::Open( const std::string& name) { // Use of the "file:" prefix is intended for testing purposes only. const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0; // Map the time-zone name to a path name. std::string path; if (pos == name.size() || name[pos] != '/') { const char* tzdir = "/usr/share/zoneinfo"; char* tzdir_env = nullptr; #if defined(_MSC_VER) _dupenv_s(&tzdir_env, nullptr, "TZDIR"); #else tzdir_env = std::getenv("TZDIR"); #endif if (tzdir_env && *tzdir_env) tzdir = tzdir_env; path += tzdir; path += '/'; #if defined(_MSC_VER) free(tzdir_env); #endif } path.append(name, pos, std::string::npos); // Open the zoneinfo file. FILE* fp = FOpen(path.c_str(), "rb"); if (fp == nullptr) return nullptr; std::size_t length = 0; if (fseek(fp, 0, SEEK_END) == 0) { long pos = ftell(fp); if (pos >= 0) { length = static_cast(pos); } rewind(fp); } return std::unique_ptr(new FileZoneInfoSource(fp, length)); } class AndroidZoneInfoSource : public FileZoneInfoSource { public: static std::unique_ptr Open(const std::string& name); std::string Version() const override { return version_; } private: explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers) : FileZoneInfoSource(fp, len), version_(vers) {} std::string version_; }; std::unique_ptr AndroidZoneInfoSource::Open( const std::string& name) { // Use of the "file:" prefix is intended for testing purposes only. const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0; // See Android's libc/tzcode/bionic.cpp for additional information. for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata", "/system/usr/share/zoneinfo/tzdata"}) { std::unique_ptr fp(FOpen(tzdata, "rb"), fclose); if (fp.get() == nullptr) continue; char hbuf[24]; // covers header.zonetab_offset too if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue; if (strncmp(hbuf, "tzdata", 6) != 0) continue; const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : ""; const std::int_fast32_t index_offset = Decode32(hbuf + 12); const std::int_fast32_t data_offset = Decode32(hbuf + 16); if (index_offset < 0 || data_offset < index_offset) continue; if (fseek(fp.get(), static_cast(index_offset), SEEK_SET) != 0) continue; char ebuf[52]; // covers entry.unused too const std::size_t index_size = static_cast(data_offset - index_offset); const std::size_t zonecnt = index_size / sizeof(ebuf); if (zonecnt * sizeof(ebuf) != index_size) continue; for (std::size_t i = 0; i != zonecnt; ++i) { if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break; const std::int_fast32_t start = data_offset + Decode32(ebuf + 40); const std::int_fast32_t length = Decode32(ebuf + 44); if (start < 0 || length < 0) break; ebuf[40] = '\0'; // ensure zone name is NUL terminated if (strcmp(name.c_str() + pos, ebuf) == 0) { if (fseek(fp.get(), static_cast(start), SEEK_SET) != 0) break; return std::unique_ptr(new AndroidZoneInfoSource( fp.release(), static_cast(length), vers)); } } } return nullptr; } } // namespace bool TimeZoneInfo::Load(const std::string& name) { // We can ensure that the loading of UTC or any other fixed-offset // zone never fails because the simple, fixed-offset state can be // internally generated. Note that this depends on our choice to not // accept leap-second encoded ("right") zoneinfo. auto offset = seconds::zero(); if (FixedOffsetFromName(name, &offset)) { return ResetToBuiltinUTC(offset); } // Find and use a ZoneInfoSource to load the named zone. auto zip = cctz_extension::zone_info_source_factory( name, [](const std::string& name) -> std::unique_ptr { if (auto zip = FileZoneInfoSource::Open(name)) return zip; if (auto zip = AndroidZoneInfoSource::Open(name)) return zip; return nullptr; }); return zip != nullptr && Load(name, zip.get()); } // BreakTime() translation for a particular transition type. time_zone::absolute_lookup TimeZoneInfo::LocalTime( std::int_fast64_t unix_time, const TransitionType& tt) const { // A civil time in "+offset" looks like (time+offset) in UTC. // Note: We perform two additions in the civil_second domain to // sidestep the chance of overflow in (unix_time + tt.utc_offset). return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; } // BreakTime() translation for a particular transition. time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time, const Transition& tr) const { const TransitionType& tt = transition_types_[tr.type_index]; // Note: (unix_time - tr.unix_time) will never overflow as we // have ensured that there is always a "nearby" transition. return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize. tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; } // MakeTime() translation with a conversion-preserving +N * 400-year shift. time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs, year_t c4_shift) const { assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_); time_zone::civil_lookup cl = MakeTime(cs); if (c4_shift > seconds::max().count() / kSecsPer400Years) { cl.pre = cl.trans = cl.post = time_point::max(); } else { const auto offset = seconds(c4_shift * kSecsPer400Years); const auto limit = time_point::max() - offset; for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) { if (*tp > limit) { *tp = time_point::max(); } else { *tp += offset; } } } return cl; } time_zone::absolute_lookup TimeZoneInfo::BreakTime( const time_point& tp) const { std::int_fast64_t unix_time = ToUnixSeconds(tp); const std::size_t timecnt = transitions_.size(); assert(timecnt != 0); // We always add a transition. if (unix_time < transitions_[0].unix_time) { return LocalTime(unix_time, transition_types_[default_transition_type_]); } if (unix_time >= transitions_[timecnt - 1].unix_time) { // After the last transition. If we extended the transitions using // future_spec_, shift back to a supported year using the 400-year // cycle of calendaric equivalence and then compensate accordingly. if (extended_) { const std::int_fast64_t diff = unix_time - transitions_[timecnt - 1].unix_time; const year_t shift = diff / kSecsPer400Years + 1; const auto d = seconds(shift * kSecsPer400Years); time_zone::absolute_lookup al = BreakTime(tp - d); al.cs = YearShift(al.cs, shift * 400); return al; } return LocalTime(unix_time, transitions_[timecnt - 1]); } const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed); if (0 < hint && hint < timecnt) { if (transitions_[hint - 1].unix_time <= unix_time) { if (unix_time < transitions_[hint].unix_time) { return LocalTime(unix_time, transitions_[hint - 1]); } } } const Transition target = {unix_time, 0, civil_second(), civil_second()}; const Transition* begin = &transitions_[0]; const Transition* tr = std::upper_bound(begin, begin + timecnt, target, Transition::ByUnixTime()); local_time_hint_.store(static_cast(tr - begin), std::memory_order_relaxed); return LocalTime(unix_time, *--tr); } time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const { const std::size_t timecnt = transitions_.size(); assert(timecnt != 0); // We always add a transition. // Find the first transition after our target civil time. const Transition* tr = nullptr; const Transition* begin = &transitions_[0]; const Transition* end = begin + timecnt; if (cs < begin->civil_sec) { tr = begin; } else if (cs >= transitions_[timecnt - 1].civil_sec) { tr = end; } else { const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed); if (0 < hint && hint < timecnt) { if (transitions_[hint - 1].civil_sec <= cs) { if (cs < transitions_[hint].civil_sec) { tr = begin + hint; } } } if (tr == nullptr) { const Transition target = {0, 0, cs, civil_second()}; tr = std::upper_bound(begin, end, target, Transition::ByCivilTime()); time_local_hint_.store(static_cast(tr - begin), std::memory_order_relaxed); } } if (tr == begin) { if (tr->prev_civil_sec >= cs) { // Before first transition, so use the default offset. const TransitionType& tt(transition_types_[default_transition_type_]); if (cs < tt.civil_min) return MakeUnique(time_point::min()); return MakeUnique(cs - (civil_second() + tt.utc_offset)); } // tr->prev_civil_sec < cs < tr->civil_sec return MakeSkipped(*tr, cs); } if (tr == end) { if (cs > (--tr)->prev_civil_sec) { // After the last transition. If we extended the transitions using // future_spec_, shift back to a supported year using the 400-year // cycle of calendaric equivalence and then compensate accordingly. if (extended_ && cs.year() > last_year_) { const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1; return TimeLocal(YearShift(cs, shift * -400), shift); } const TransitionType& tt(transition_types_[tr->type_index]); if (cs > tt.civil_max) return MakeUnique(time_point::max()); return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); } // tr->civil_sec <= cs <= tr->prev_civil_sec return MakeRepeated(*tr, cs); } if (tr->prev_civil_sec < cs) { // tr->prev_civil_sec < cs < tr->civil_sec return MakeSkipped(*tr, cs); } if (cs <= (--tr)->prev_civil_sec) { // tr->civil_sec <= cs <= tr->prev_civil_sec return MakeRepeated(*tr, cs); } // In between transitions. return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); } std::string TimeZoneInfo::Version() const { return version_; } std::string TimeZoneInfo::Description() const { std::ostringstream oss; oss << "#trans=" << transitions_.size(); oss << " #types=" << transition_types_.size(); oss << " spec='" << future_spec_ << "'"; return oss.str(); } bool TimeZoneInfo::NextTransition(const time_point& tp, time_zone::civil_transition* trans) const { if (transitions_.empty()) return false; const Transition* begin = &transitions_[0]; const Transition* end = begin + transitions_.size(); if (begin->unix_time <= -(1LL << 59)) { // Do not report the BIG_BANG found in recent zoneinfo data as it is // really a sentinel, not a transition. See tz/zic.c. ++begin; } std::int_fast64_t unix_time = ToUnixSeconds(tp); const Transition target = {unix_time, 0, civil_second(), civil_second()}; const Transition* tr = std::upper_bound(begin, end, target, Transition::ByUnixTime()); for (; tr != end; ++tr) { // skip no-op transitions std::uint_fast8_t prev_type_index = (tr == begin) ? default_transition_type_ : tr[-1].type_index; if (!EquivTransitions(prev_type_index, tr[0].type_index)) break; } // When tr == end we return false, ignoring future_spec_. if (tr == end) return false; trans->from = tr->prev_civil_sec + 1; trans->to = tr->civil_sec; return true; } bool TimeZoneInfo::PrevTransition(const time_point& tp, time_zone::civil_transition* trans) const { if (transitions_.empty()) return false; const Transition* begin = &transitions_[0]; const Transition* end = begin + transitions_.size(); if (begin->unix_time <= -(1LL << 59)) { // Do not report the BIG_BANG found in recent zoneinfo data as it is // really a sentinel, not a transition. See tz/zic.c. ++begin; } std::int_fast64_t unix_time = ToUnixSeconds(tp); if (FromUnixSeconds(unix_time) != tp) { if (unix_time == std::numeric_limits::max()) { if (end == begin) return false; // Ignore future_spec_. trans->from = (--end)->prev_civil_sec + 1; trans->to = end->civil_sec; return true; } unix_time += 1; // ceils } const Transition target = {unix_time, 0, civil_second(), civil_second()}; const Transition* tr = std::lower_bound(begin, end, target, Transition::ByUnixTime()); for (; tr != begin; --tr) { // skip no-op transitions std::uint_fast8_t prev_type_index = (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index; if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break; } // When tr == end we return the "last" transition, ignoring future_spec_. if (tr == begin) return false; trans->from = (--tr)->prev_civil_sec + 1; trans->to = tr->civil_sec; return true; } } // namespace cctz } // namespace time_internal ABSL_NAMESPACE_END } // namespace absl