#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_ #define ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_ #include #include #include #include #include #include #include #include #include #include "absl/strings/internal/str_format/checker.h" #include "absl/strings/internal/str_format/extension.h" namespace absl { namespace str_format_internal { // The analyzed properties of a single specified conversion. struct UnboundConversion { UnboundConversion() : flags() /* This is required to zero all the fields of flags. */ { flags.basic = true; } class InputValue { public: void set_value(int value) { assert(value >= 0); value_ = value; } int value() const { return value_; } // Marks the value as "from arg". aka the '*' format. // Requires `value >= 1`. // When set, is_from_arg() return true and get_from_arg() returns the // original value. // `value()`'s return value is unspecfied in this state. void set_from_arg(int value) { assert(value > 0); value_ = -value - 1; } bool is_from_arg() const { return value_ < -1; } int get_from_arg() const { assert(is_from_arg()); return -value_ - 1; } private: int value_ = -1; }; // No need to initialize. It will always be set in the parser. int arg_position; InputValue width; InputValue precision; Flags flags; LengthMod length_mod; ConversionChar conv; }; // Consume conversion spec prefix (not including '%') of [p, end) if valid. // Examples of valid specs would be e.g.: "s", "d", "-12.6f". // If valid, it returns the first character following the conversion spec, // and the spec part is broken down and returned in 'conv'. // If invalid, returns nullptr. const char* ConsumeUnboundConversion(const char* p, const char* end, UnboundConversion* conv, int* next_arg); // Helper tag class for the table below. // It allows fast `char -> ConversionChar/LengthMod` checking and conversions. class ConvTag { public: constexpr ConvTag(ConversionChar::Id id) : tag_(id) {} // NOLINT // We invert the length modifiers to make them negative so that we can easily // test for them. constexpr ConvTag(LengthMod::Id id) : tag_(~id) {} // NOLINT // Everything else is -128, which is negative to make is_conv() simpler. constexpr ConvTag() : tag_(-128) {} bool is_conv() const { return tag_ >= 0; } bool is_length() const { return tag_ < 0 && tag_ != -128; } ConversionChar as_conv() const { assert(is_conv()); return ConversionChar::FromId(static_cast(tag_)); } LengthMod as_length() const { assert(is_length()); return LengthMod::FromId(static_cast(~tag_)); } private: std::int8_t tag_; }; extern const ConvTag kTags[256]; // Keep a single table for all the conversion chars and length modifiers. inline ConvTag GetTagForChar(char c) { return kTags[static_cast(c)]; } // Parse the format string provided in 'src' and pass the identified items into // 'consumer'. // Text runs will be passed by calling // Consumer::Append(string_view); // ConversionItems will be passed by calling // Consumer::ConvertOne(UnboundConversion, string_view); // In the case of ConvertOne, the string_view that is passed is the // portion of the format string corresponding to the conversion, not including // the leading %. On success, it returns true. On failure, it stops and returns // false. template bool ParseFormatString(string_view src, Consumer consumer) { int next_arg = 0; const char* p = src.data(); const char* const end = p + src.size(); while (p != end) { const char* percent = static_cast(memchr(p, '%', end - p)); if (!percent) { // We found the last substring. return consumer.Append(string_view(p, end - p)); } // We found a percent, so push the text run then process the percent. if (ABSL_PREDICT_FALSE(!consumer.Append(string_view(p, percent - p)))) { return false; } if (ABSL_PREDICT_FALSE(percent + 1 >= end)) return false; auto tag = GetTagForChar(percent[1]); if (tag.is_conv()) { if (ABSL_PREDICT_FALSE(next_arg < 0)) { // This indicates an error in the format std::string. // The only way to get `next_arg < 0` here is to have a positional // argument first which sets next_arg to -1 and then a non-positional // argument. return false; } p = percent + 2; // Keep this case separate from the one below. // ConvertOne is more efficient when the compiler can see that the `basic` // flag is set. UnboundConversion conv; conv.conv = tag.as_conv(); conv.arg_position = ++next_arg; if (ABSL_PREDICT_FALSE( !consumer.ConvertOne(conv, string_view(percent + 1, 1)))) { return false; } } else if (percent[1] != '%') { UnboundConversion conv; p = ConsumeUnboundConversion(percent + 1, end, &conv, &next_arg); if (ABSL_PREDICT_FALSE(p == nullptr)) return false; if (ABSL_PREDICT_FALSE(!consumer.ConvertOne( conv, string_view(percent + 1, p - (percent + 1))))) { return false; } } else { if (ABSL_PREDICT_FALSE(!consumer.Append("%"))) return false; p = percent + 2; continue; } } return true; } // Always returns true, or fails to compile in a constexpr context if s does not // point to a constexpr char array. constexpr bool EnsureConstexpr(string_view s) { return s.empty() || s[0] == s[0]; } class ParsedFormatBase { public: explicit ParsedFormatBase(string_view format, bool allow_ignored, std::initializer_list convs); ParsedFormatBase(const ParsedFormatBase& other) { *this = other; } ParsedFormatBase(ParsedFormatBase&& other) { *this = std::move(other); } ParsedFormatBase& operator=(const ParsedFormatBase& other) { if (this == &other) return *this; has_error_ = other.has_error_; items_ = other.items_; size_t text_size = items_.empty() ? 0 : items_.back().text_end; data_.reset(new char[text_size]); memcpy(data_.get(), other.data_.get(), text_size); return *this; } ParsedFormatBase& operator=(ParsedFormatBase&& other) { if (this == &other) return *this; has_error_ = other.has_error_; data_ = std::move(other.data_); items_ = std::move(other.items_); // Reset the vector to make sure the invariants hold. other.items_.clear(); return *this; } template bool ProcessFormat(Consumer consumer) const { const char* const base = data_.get(); string_view text(base, 0); for (const auto& item : items_) { const char* const end = text.data() + text.size(); text = string_view(end, (base + item.text_end) - end); if (item.is_conversion) { if (!consumer.ConvertOne(item.conv, text)) return false; } else { if (!consumer.Append(text)) return false; } } return !has_error_; } bool has_error() const { return has_error_; } private: // Returns whether the conversions match and if !allow_ignored it verifies // that all conversions are used by the format. bool MatchesConversions(bool allow_ignored, std::initializer_list convs) const; struct ParsedFormatConsumer; struct ConversionItem { bool is_conversion; // Points to the past-the-end location of this element in the data_ array. size_t text_end; UnboundConversion conv; }; bool has_error_; std::unique_ptr data_; std::vector items_; }; // A value type representing a preparsed format. These can be created, copied // around, and reused to speed up formatting loops. // The user must specify through the template arguments the conversion // characters used in the format. This will be checked at compile time. // // This class uses Conv enum values to specify each argument. // This allows for more flexibility as you can specify multiple possible // conversion characters for each argument. // ParsedFormat is a simplified alias for when the user only // needs to specify a single conversion character for each argument. // // Example: // // Extended format supports multiple characters per argument: // using MyFormat = ExtendedParsedFormat; // MyFormat GetFormat(bool use_hex) { // if (use_hex) return MyFormat("foo %x bar"); // return MyFormat("foo %d bar"); // } // // 'format' can be used with any value that supports 'd' and 'x', // // like `int`. // auto format = GetFormat(use_hex); // value = StringF(format, i); // // This class also supports runtime format checking with the ::New() and // ::NewAllowIgnored() factory functions. // This is the only API that allows the user to pass a runtime specified format // string. These factory functions will return NULL if the format does not match // the conversions requested by the user. template class ExtendedParsedFormat : public str_format_internal::ParsedFormatBase { public: explicit ExtendedParsedFormat(string_view format) #ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER __attribute__(( enable_if(str_format_internal::EnsureConstexpr(format), "Format std::string is not constexpr."), enable_if(str_format_internal::ValidFormatImpl(format), "Format specified does not match the template arguments."))) #endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER : ExtendedParsedFormat(format, false) { } // ExtendedParsedFormat factory function. // The user still has to specify the conversion characters, but they will not // be checked at compile time. Instead, it will be checked at runtime. // This delays the checking to runtime, but allows the user to pass // dynamically sourced formats. // It returns NULL if the format does not match the conversion characters. // The user is responsible for checking the return value before using it. // // The 'New' variant will check that all the specified arguments are being // consumed by the format and return NULL if any argument is being ignored. // The 'NewAllowIgnored' variant will not verify this and will allow formats // that ignore arguments. static std::unique_ptr New(string_view format) { return New(format, false); } static std::unique_ptr NewAllowIgnored( string_view format) { return New(format, true); } private: static std::unique_ptr New(string_view format, bool allow_ignored) { std::unique_ptr conv( new ExtendedParsedFormat(format, allow_ignored)); if (conv->has_error()) return nullptr; return conv; } ExtendedParsedFormat(string_view s, bool allow_ignored) : ParsedFormatBase(s, allow_ignored, {C...}) {} }; } // namespace str_format_internal } // namespace absl #endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_