// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: seed_sequences.h // ----------------------------------------------------------------------------- // // This header contains utilities for creating and working with seed sequences // conforming to [rand.req.seedseq]. In general, direct construction of seed // sequences is discouraged, but use-cases for construction of identical bit // generators (using the same seed sequence) may be helpful (e.g. replaying a // simulation whose state is derived from variates of a bit generator). #ifndef ABSL_RANDOM_SEED_SEQUENCES_H_ #define ABSL_RANDOM_SEED_SEQUENCES_H_ #include #include #include "absl/random/internal/salted_seed_seq.h" #include "absl/random/internal/seed_material.h" #include "absl/random/seed_gen_exception.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN // ----------------------------------------------------------------------------- // absl::SeedSeq // ----------------------------------------------------------------------------- // // `absl::SeedSeq` constructs a seed sequence according to [rand.req.seedseq] // for use within bit generators. `absl::SeedSeq`, unlike `std::seed_seq` // additionally salts the generated seeds with extra implementation-defined // entropy. For that reason, you can use `absl::SeedSeq` in combination with // standard library bit generators (e.g. `std::mt19937`) to introduce // non-determinism in your seeds. // // Example: // // absl::SeedSeq my_seed_seq({a, b, c}); // std::mt19937 my_bitgen(my_seed_seq); // using SeedSeq = random_internal::SaltedSeedSeq; // ----------------------------------------------------------------------------- // absl::CreateSeedSeqFrom(bitgen*) // ----------------------------------------------------------------------------- // // Constructs a seed sequence conforming to [rand.req.seedseq] using variates // produced by a provided bit generator. // // You should generally avoid direct construction of seed sequences, but // use-cases for reuse of a seed sequence to construct identical bit generators // may be helpful (eg. replaying a simulation whose state is derived from bit // generator values). // // If bitgen == nullptr, then behavior is undefined. // // Example: // // absl::BitGen my_bitgen; // auto seed_seq = absl::CreateSeedSeqFrom(&my_bitgen); // absl::BitGen new_engine(seed_seq); // derived from my_bitgen, but not // // correlated. // template SeedSeq CreateSeedSeqFrom(URBG* urbg) { SeedSeq::result_type seed_material[random_internal::kEntropyBlocksNeeded]; if (!random_internal::ReadSeedMaterialFromURBG( urbg, absl::MakeSpan(seed_material))) { random_internal::ThrowSeedGenException(); } return SeedSeq(std::begin(seed_material), std::end(seed_material)); } // ----------------------------------------------------------------------------- // absl::MakeSeedSeq() // ----------------------------------------------------------------------------- // // Constructs an `absl::SeedSeq` salting the generated values using // implementation-defined entropy. The returned sequence can be used to create // equivalent bit generators correlated using this sequence. // // Example: // // auto my_seed_seq = absl::MakeSeedSeq(); // std::mt19937 rng1(my_seed_seq); // std::mt19937 rng2(my_seed_seq); // EXPECT_EQ(rng1(), rng2()); // SeedSeq MakeSeedSeq(); ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_RANDOM_SEED_SEQUENCES_H_