// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate // symbols from arbitrary system and other headers, since it may be built // with different flags from other targets, using different levels of // optimization, potentially introducing ODR violations. #include "absl/random/internal/randen_hwaes.h" #include #include #include "absl/base/attributes.h" #include "absl/random/internal/platform.h" // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain // a hardware accelerated implementation of randen, or whether it // will contain stubs that exit the process. #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) // The platform.h directives are sufficient to indicate whether // we should build accelerated implementations for x86. #if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH) #define ABSL_RANDEN_HWAES_IMPL 1 #endif #elif defined(ABSL_ARCH_PPC) // The platform.h directives are sufficient to indicate whether // we should build accelerated implementations for PPC. // // NOTE: This has mostly been tested on 64-bit Power variants, // and not embedded cpus such as powerpc32-8540 #if ABSL_HAVE_ACCELERATED_AES #define ABSL_RANDEN_HWAES_IMPL 1 #endif #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) // ARM is somewhat more complicated. We might support crypto natively... #if ABSL_HAVE_ACCELERATED_AES || \ (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO)) #define ABSL_RANDEN_HWAES_IMPL 1 #elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \ (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9) // ...or, on GCC, we can use an ASM directive to // instruct the assember to allow crypto instructions. #define ABSL_RANDEN_HWAES_IMPL 1 #define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1 #endif #else // HWAES is unsupported by these architectures / platforms: // __myriad2__ // __mips__ // // Other architectures / platforms are unknown. // // See the Abseil documentation on supported macros at: // https://abseil.io/docs/cpp/platforms/macros #endif #if !defined(ABSL_RANDEN_HWAES_IMPL) // No accelerated implementation is supported. // The RandenHwAes functions are stubs that print an error and exit. #include #include namespace absl { namespace random_internal { // No accelerated implementation. bool HasRandenHwAesImplementation() { return false; } // NOLINTNEXTLINE const void* RandenHwAes::GetKeys() { // Attempted to dispatch to an unsupported dispatch target. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); return nullptr; } // NOLINTNEXTLINE void RandenHwAes::Absorb(const void*, void*) { // Attempted to dispatch to an unsupported dispatch target. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); } // NOLINTNEXTLINE void RandenHwAes::Generate(const void*, void*) { // Attempted to dispatch to an unsupported dispatch target. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); } } // namespace random_internal } // namespace absl #else // defined(ABSL_RANDEN_HWAES_IMPL) // // Accelerated implementations are supported. // We need the per-architecture includes and defines. // #include "absl/random/internal/randen_traits.h" // TARGET_CRYPTO defines a crypto attribute for each architecture. // // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO. #if (defined(__clang__) || defined(__GNUC__)) #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) #define ABSL_TARGET_CRYPTO __attribute__((target("aes"))) #elif defined(ABSL_ARCH_PPC) #define ABSL_TARGET_CRYPTO __attribute__((target("crypto"))) #else #define ABSL_TARGET_CRYPTO #endif #else #define ABSL_TARGET_CRYPTO #endif #if defined(ABSL_ARCH_PPC) // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode, // however the PPC altivec vector registers (and thus the AES instructions) // always operate in big-endian mode. #include // #defines vector __vector; in C++, this is bad form. #undef vector // Rely on the PowerPC AltiVec vector operations for accelerated AES // instructions. GCC support of the PPC vector types is described in: // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html // // Already provides operator^=. using Vector128 = __vector unsigned long long; // NOLINT(runtime/int) namespace { inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) { // Reverses the bytes of the vector. const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; return vec_perm(v, v, perm); } // WARNING: these load/store in native byte order. It is OK to load and then // store an unchanged vector, but interpreting the bits as a number or input // to AES will have undefined results. inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { return vec_vsx_ld(0, reinterpret_cast(from)); } inline ABSL_TARGET_CRYPTO void Vector128Store( const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { vec_vsx_st(v, 0, reinterpret_cast(to)); } // One round of AES. "round_key" is a public constant for breaking the // symmetry of AES (ensures previously equal columns differ afterwards). inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { return Vector128(__builtin_crypto_vcipher(state, round_key)); } // Enables native loads in the round loop by pre-swapping. inline ABSL_TARGET_CRYPTO void SwapEndian( uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { using absl::random_internal::RandenTraits; constexpr size_t kLanes = 2; constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks; for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) { const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch)); Vector128Store(v, state + kLanes * branch); } } } // namespace #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) // This asm directive will cause the file to be compiled with crypto extensions // whether or not the cpu-architecture supports it. #if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE asm(".arch_extension crypto\n"); // Override missing defines. #if !defined(__ARM_NEON) #define __ARM_NEON 1 #endif #if !defined(__ARM_FEATURE_CRYPTO) #define __ARM_FEATURE_CRYPTO 1 #endif #endif // Rely on the ARM NEON+Crypto advanced simd types, defined in . // uint8x16_t is the user alias for underlying __simd128_uint8_t type. // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf // // defines the following // // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t; // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t; // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t; // // vld1q_v // vst1q_v // vaeseq_v // vaesmcq_v #include // Already provides operator^=. using Vector128 = uint8x16_t; namespace { inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { return vld1q_u8(reinterpret_cast(from)); } inline ABSL_TARGET_CRYPTO void Vector128Store( const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { vst1q_u8(reinterpret_cast(to), v); } // One round of AES. "round_key" is a public constant for breaking the // symmetry of AES (ensures previously equal columns differ afterwards). inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { // It is important to always use the full round function - omitting the // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] // and does not help because we never decrypt. // // Note that ARM divides AES instructions differently than x86 / PPC, // And we need to skip the first AddRoundKey step and add an extra // AddRoundKey step to the end. Lucky for us this is just XOR. return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; } inline ABSL_TARGET_CRYPTO void SwapEndian( uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {} } // namespace #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) // On x86 we rely on the aesni instructions #include namespace { // Vector128 class is only wrapper for __m128i, benchmark indicates that it's // faster than using __m128i directly. class Vector128 { public: // Convert from/to intrinsics. inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {} inline __m128i data() const { return data_; } inline Vector128& operator^=(const Vector128& other) { data_ = _mm_xor_si128(data_, other.data()); return *this; } private: __m128i data_; }; inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) { return Vector128(_mm_load_si128(reinterpret_cast(from))); } inline ABSL_TARGET_CRYPTO void Vector128Store( const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) { _mm_store_si128(reinterpret_cast<__m128i * ABSL_RANDOM_INTERNAL_RESTRICT>(to), v.data()); } // One round of AES. "round_key" is a public constant for breaking the // symmetry of AES (ensures previously equal columns differ afterwards). inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { // It is important to always use the full round function - omitting the // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] // and does not help because we never decrypt. return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); } inline ABSL_TARGET_CRYPTO void SwapEndian( uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {} } // namespace #endif namespace { // u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store // the randen_keys. struct alignas(16) u64x2 { constexpr u64x2(uint64_t hi, uint64_t lo) #if defined(ABSL_ARCH_PPC) // This has been tested with PPC running in little-endian mode; // We byte-swap the u64x2 structure from little-endian to big-endian // because altivec always runs in big-endian mode. : v{__builtin_bswap64(hi), __builtin_bswap64(lo)} { #else : v{lo, hi} { #endif } constexpr bool operator==(const u64x2& other) const { return v[0] == other.v[0] && v[1] == other.v[1]; } constexpr bool operator!=(const u64x2& other) const { return !(*this == other); } uint64_t v[2]; }; // namespace #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunknown-pragmas" #endif // At this point, all of the platform-specific features have been defined / // implemented. // // REQUIRES: using u64x2 = ... // REQUIRES: using Vector128 = ... // REQUIRES: Vector128 Vector128Load(void*) {...} // REQUIRES: void Vector128Store(Vector128, void*) {...} // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...} // REQUIRES: void SwapEndian(uint64_t*) {...} // // PROVIDES: absl::random_internal::RandenHwAes::Absorb // PROVIDES: absl::random_internal::RandenHwAes::Generate // RANDen = RANDom generator or beetroots in Swiss German. // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. // // High-level summary: // 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is // a sponge-like random generator that requires a cryptographic permutation. // It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by // achieving backtracking resistance with only one Permute() per buffer. // // 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round // Function" constructs up to 1024-bit permutations using an improved // Generalized Feistel network with 2-round AES-128 functions. This Feistel // block shuffle achieves diffusion faster and is less vulnerable to // sliced-biclique attacks than the Type-2 cyclic shuffle. // // 3) "Improving the Generalized Feistel" and "New criterion for diffusion // property" extends the same kind of improved Feistel block shuffle to 16 // branches, which enables a 2048-bit permutation. // // We combine these three ideas and also change Simpira's subround keys from // structured/low-entropy counters to digits of Pi. // Randen constants. using absl::random_internal::RandenTraits; constexpr size_t kStateBytes = RandenTraits::kStateBytes; constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes; constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks; constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds; constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions; // Independent keys (272 = 2.1 KiB) for the first AES subround of each function. constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions; // INCLUDE keys. #include "absl/random/internal/randen-keys.inc" static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal"); static_assert(round_keys[kKeys - 1] != u64x2(0, 0), "Too few round_keys initializers"); // Number of uint64_t lanes per 128-bit vector; constexpr size_t kLanes = 2; // Block shuffles applies a shuffle to the entire state between AES rounds. // Improved odd-even shuffle from "New criterion for diffusion property". inline ABSL_TARGET_CRYPTO void BlockShuffle( uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12}; // The fully unrolled loop without the memcpy improves the speed by about // 30% over the equivalent loop. const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]); const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]); const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]); const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]); const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]); const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]); const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]); const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]); const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]); const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]); const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]); const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]); const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]); const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]); const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]); const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]); Vector128Store(v0, state + kLanes * 0); Vector128Store(v1, state + kLanes * 1); Vector128Store(v2, state + kLanes * 2); Vector128Store(v3, state + kLanes * 3); Vector128Store(v4, state + kLanes * 4); Vector128Store(v5, state + kLanes * 5); Vector128Store(v6, state + kLanes * 6); Vector128Store(v7, state + kLanes * 7); Vector128Store(w0, state + kLanes * 8); Vector128Store(w1, state + kLanes * 9); Vector128Store(w2, state + kLanes * 10); Vector128Store(w3, state + kLanes * 11); Vector128Store(w4, state + kLanes * 12); Vector128Store(w5, state + kLanes * 13); Vector128Store(w6, state + kLanes * 14); Vector128Store(w7, state + kLanes * 15); } // Feistel round function using two AES subrounds. Very similar to F() // from Simpira v2, but with independent subround keys. Uses 17 AES rounds // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel // XORs are 'free' (included in the second AES instruction). inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound( uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); // MSVC does a horrible job at unrolling loops. // So we unroll the loop by hand to improve the performance. const Vector128 s0 = Vector128Load(state + kLanes * 0); const Vector128 s1 = Vector128Load(state + kLanes * 1); const Vector128 s2 = Vector128Load(state + kLanes * 2); const Vector128 s3 = Vector128Load(state + kLanes * 3); const Vector128 s4 = Vector128Load(state + kLanes * 4); const Vector128 s5 = Vector128Load(state + kLanes * 5); const Vector128 s6 = Vector128Load(state + kLanes * 6); const Vector128 s7 = Vector128Load(state + kLanes * 7); const Vector128 s8 = Vector128Load(state + kLanes * 8); const Vector128 s9 = Vector128Load(state + kLanes * 9); const Vector128 s10 = Vector128Load(state + kLanes * 10); const Vector128 s11 = Vector128Load(state + kLanes * 11); const Vector128 s12 = Vector128Load(state + kLanes * 12); const Vector128 s13 = Vector128Load(state + kLanes * 13); const Vector128 s14 = Vector128Load(state + kLanes * 14); const Vector128 s15 = Vector128Load(state + kLanes * 15); // Encode even blocks with keys. const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0)); const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1)); const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2)); const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3)); const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4)); const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5)); const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6)); const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7)); // Encode odd blocks with even output from above. const Vector128 o1 = AesRound(e0, s1); const Vector128 o3 = AesRound(e2, s3); const Vector128 o5 = AesRound(e4, s5); const Vector128 o7 = AesRound(e6, s7); const Vector128 o9 = AesRound(e8, s9); const Vector128 o11 = AesRound(e10, s11); const Vector128 o13 = AesRound(e12, s13); const Vector128 o15 = AesRound(e14, s15); // Store odd blocks. (These will be shuffled later). Vector128Store(o1, state + kLanes * 1); Vector128Store(o3, state + kLanes * 3); Vector128Store(o5, state + kLanes * 5); Vector128Store(o7, state + kLanes * 7); Vector128Store(o9, state + kLanes * 9); Vector128Store(o11, state + kLanes * 11); Vector128Store(o13, state + kLanes * 13); Vector128Store(o15, state + kLanes * 15); return keys + 8; } // Cryptographic permutation based via type-2 Generalized Feistel Network. // Indistinguishable from ideal by chosen-ciphertext adversaries using less than // 2^64 queries if the round function is a PRF. This is similar to the b=8 case // of Simpira v2, but more efficient than its generic construction for b=16. inline ABSL_TARGET_CRYPTO void Permute( const void* ABSL_RANDOM_INTERNAL_RESTRICT keys, uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) { const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 = static_cast(keys); // (Successfully unrolled; the first iteration jumps into the second half) #ifdef __clang__ #pragma clang loop unroll_count(2) #endif for (size_t round = 0; round < kFeistelRounds; ++round) { keys128 = FeistelRound(state, keys128); BlockShuffle(state); } } } // namespace namespace absl { namespace random_internal { bool HasRandenHwAesImplementation() { return true; } const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() { // Round keys for one AES per Feistel round and branch. // The canonical implementation uses first digits of Pi. return round_keys; } // NOLINTNEXTLINE void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void, void* state_void) { uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state = reinterpret_cast(state_void); const uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT seed = reinterpret_cast(seed_void); constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128); constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128); static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes, "Not i*V"); static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks"); static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks"); Vector128 b1 = Vector128Load(state + kLanes * 1); b1 ^= Vector128Load(seed + kLanes * 0); Vector128Store(b1, state + kLanes * 1); Vector128 b2 = Vector128Load(state + kLanes * 2); b2 ^= Vector128Load(seed + kLanes * 1); Vector128Store(b2, state + kLanes * 2); Vector128 b3 = Vector128Load(state + kLanes * 3); b3 ^= Vector128Load(seed + kLanes * 2); Vector128Store(b3, state + kLanes * 3); Vector128 b4 = Vector128Load(state + kLanes * 4); b4 ^= Vector128Load(seed + kLanes * 3); Vector128Store(b4, state + kLanes * 4); Vector128 b5 = Vector128Load(state + kLanes * 5); b5 ^= Vector128Load(seed + kLanes * 4); Vector128Store(b5, state + kLanes * 5); Vector128 b6 = Vector128Load(state + kLanes * 6); b6 ^= Vector128Load(seed + kLanes * 5); Vector128Store(b6, state + kLanes * 6); Vector128 b7 = Vector128Load(state + kLanes * 7); b7 ^= Vector128Load(seed + kLanes * 6); Vector128Store(b7, state + kLanes * 7); Vector128 b8 = Vector128Load(state + kLanes * 8); b8 ^= Vector128Load(seed + kLanes * 7); Vector128Store(b8, state + kLanes * 8); Vector128 b9 = Vector128Load(state + kLanes * 9); b9 ^= Vector128Load(seed + kLanes * 8); Vector128Store(b9, state + kLanes * 9); Vector128 b10 = Vector128Load(state + kLanes * 10); b10 ^= Vector128Load(seed + kLanes * 9); Vector128Store(b10, state + kLanes * 10); Vector128 b11 = Vector128Load(state + kLanes * 11); b11 ^= Vector128Load(seed + kLanes * 10); Vector128Store(b11, state + kLanes * 11); Vector128 b12 = Vector128Load(state + kLanes * 12); b12 ^= Vector128Load(seed + kLanes * 11); Vector128Store(b12, state + kLanes * 12); Vector128 b13 = Vector128Load(state + kLanes * 13); b13 ^= Vector128Load(seed + kLanes * 12); Vector128Store(b13, state + kLanes * 13); Vector128 b14 = Vector128Load(state + kLanes * 14); b14 ^= Vector128Load(seed + kLanes * 13); Vector128Store(b14, state + kLanes * 14); Vector128 b15 = Vector128Load(state + kLanes * 15); b15 ^= Vector128Load(seed + kLanes * 14); Vector128Store(b15, state + kLanes * 15); } // NOLINTNEXTLINE void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys, void* state_void) { static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch"); uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state = reinterpret_cast(state_void); const Vector128 prev_inner = Vector128Load(state); SwapEndian(state); Permute(keys, state); SwapEndian(state); // Ensure backtracking resistance. Vector128 inner = Vector128Load(state); inner ^= prev_inner; Vector128Store(inner, state); } #ifdef __clang__ #pragma clang diagnostic pop #endif } // namespace random_internal } // namespace absl #endif // (ABSL_RANDEN_HWAES_IMPL)