// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/randen.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/randen_detect.h" // RANDen = RANDom generator or beetroots in Swiss German. // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. // // High-level summary: // 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is // a sponge-like random generator that requires a cryptographic permutation. // It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by // achieving backtracking resistance with only one Permute() per buffer. // // 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round // Function" constructs up to 1024-bit permutations using an improved // Generalized Feistel network with 2-round AES-128 functions. This Feistel // block shuffle achieves diffusion faster and is less vulnerable to // sliced-biclique attacks than the Type-2 cyclic shuffle. // // 3) "Improving the Generalized Feistel" and "New criterion for diffusion // property" extends the same kind of improved Feistel block shuffle to 16 // branches, which enables a 2048-bit permutation. // // We combine these three ideas and also change Simpira's subround keys from // structured/low-entropy counters to digits of Pi. namespace absl { namespace random_internal { namespace { struct RandenState { const void* keys; bool has_crypto; }; RandenState GetRandenState() { static const RandenState state = []() { RandenState tmp; #if ABSL_RANDOM_INTERNAL_AES_DISPATCH // HW AES Dispatch. if (HasRandenHwAesImplementation() && CPUSupportsRandenHwAes()) { tmp.has_crypto = true; tmp.keys = RandenHwAes::GetKeys(); } else { tmp.has_crypto = false; tmp.keys = RandenSlow::GetKeys(); } #elif ABSL_HAVE_ACCELERATED_AES // HW AES is enabled. tmp.has_crypto = true; tmp.keys = RandenHwAes::GetKeys(); #else // HW AES is disabled. tmp.has_crypto = false; tmp.keys = RandenSlow::GetKeys(); #endif return tmp; }(); return state; } } // namespace Randen::Randen() { auto tmp = GetRandenState(); keys_ = tmp.keys; #if ABSL_RANDOM_INTERNAL_AES_DISPATCH has_crypto_ = tmp.has_crypto; #endif } } // namespace random_internal } // namespace absl