// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/pool_urbg.h" #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/sysinfo.h" #include "absl/base/internal/unaligned_access.h" #include "absl/base/optimization.h" #include "absl/random/internal/randen.h" #include "absl/random/internal/seed_material.h" #include "absl/random/seed_gen_exception.h" using absl::base_internal::SpinLock; using absl::base_internal::SpinLockHolder; namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { namespace { // RandenPoolEntry is a thread-safe pseudorandom bit generator, implementing a // single generator within a RandenPool. It is an internal implementation // detail, and does not aim to conform to [rand.req.urng]. // // NOTE: There are alignment issues when used on ARM, for instance. // See the allocation code in PoolAlignedAlloc(). class RandenPoolEntry { public: static constexpr size_t kState = RandenTraits::kStateBytes / sizeof(uint32_t); static constexpr size_t kCapacity = RandenTraits::kCapacityBytes / sizeof(uint32_t); void Init(absl::Span data) { SpinLockHolder l(&mu_); // Always uncontested. std::copy(data.begin(), data.end(), std::begin(state_)); next_ = kState; } // Copy bytes into out. void Fill(uint8_t* out, size_t bytes) ABSL_LOCKS_EXCLUDED(mu_); // Returns random bits from the buffer in units of T. template inline T Generate() ABSL_LOCKS_EXCLUDED(mu_); inline void MaybeRefill() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (next_ >= kState) { next_ = kCapacity; impl_.Generate(state_); } } private: // Randen URBG state. uint32_t state_[kState] ABSL_GUARDED_BY(mu_); // First to satisfy alignment. SpinLock mu_; const Randen impl_; size_t next_ ABSL_GUARDED_BY(mu_); }; template <> inline uint8_t RandenPoolEntry::Generate() { SpinLockHolder l(&mu_); MaybeRefill(); return static_cast(state_[next_++]); } template <> inline uint16_t RandenPoolEntry::Generate() { SpinLockHolder l(&mu_); MaybeRefill(); return static_cast(state_[next_++]); } template <> inline uint32_t RandenPoolEntry::Generate() { SpinLockHolder l(&mu_); MaybeRefill(); return state_[next_++]; } template <> inline uint64_t RandenPoolEntry::Generate() { SpinLockHolder l(&mu_); if (next_ >= kState - 1) { next_ = kCapacity; impl_.Generate(state_); } auto p = state_ + next_; next_ += 2; uint64_t result; std::memcpy(&result, p, sizeof(result)); return result; } void RandenPoolEntry::Fill(uint8_t* out, size_t bytes) { SpinLockHolder l(&mu_); while (bytes > 0) { MaybeRefill(); size_t remaining = (kState - next_) * sizeof(state_[0]); size_t to_copy = std::min(bytes, remaining); std::memcpy(out, &state_[next_], to_copy); out += to_copy; bytes -= to_copy; next_ += (to_copy + sizeof(state_[0]) - 1) / sizeof(state_[0]); } } // Number of pooled urbg entries. static constexpr int kPoolSize = 8; // Shared pool entries. static absl::once_flag pool_once; ABSL_CACHELINE_ALIGNED static RandenPoolEntry* shared_pools[kPoolSize]; // Returns an id in the range [0 ... kPoolSize), which indexes into the // pool of random engines. // // Each thread to access the pool is assigned a sequential ID (without reuse) // from the pool-id space; the id is cached in a thread_local variable. // This id is assigned based on the arrival-order of the thread to the // GetPoolID call; this has no binary, CL, or runtime stability because // on subsequent runs the order within the same program may be significantly // different. However, as other thread IDs are not assigned sequentially, // this is not expected to matter. int GetPoolID() { static_assert(kPoolSize >= 1, "At least one urbg instance is required for PoolURBG"); ABSL_CONST_INIT static std::atomic sequence{0}; #ifdef ABSL_HAVE_THREAD_LOCAL static thread_local int my_pool_id = -1; if (ABSL_PREDICT_FALSE(my_pool_id < 0)) { my_pool_id = (sequence++ % kPoolSize); } return my_pool_id; #else static pthread_key_t tid_key = [] { pthread_key_t tmp_key; int err = pthread_key_create(&tmp_key, nullptr); if (err) { ABSL_RAW_LOG(FATAL, "pthread_key_create failed with %d", err); } return tmp_key; }(); // Store the value in the pthread_{get/set}specific. However an uninitialized // value is 0, so add +1 to distinguish from the null value. intptr_t my_pool_id = reinterpret_cast(pthread_getspecific(tid_key)); if (ABSL_PREDICT_FALSE(my_pool_id == 0)) { // No allocated ID, allocate the next value, cache it, and return. my_pool_id = (sequence++ % kPoolSize) + 1; int err = pthread_setspecific(tid_key, reinterpret_cast(my_pool_id)); if (err) { ABSL_RAW_LOG(FATAL, "pthread_setspecific failed with %d", err); } } return my_pool_id - 1; #endif } // Allocate a RandenPoolEntry with at least 32-byte alignment, which is required // by ARM platform code. RandenPoolEntry* PoolAlignedAlloc() { constexpr size_t kAlignment = ABSL_CACHELINE_SIZE > 32 ? ABSL_CACHELINE_SIZE : 32; // Not all the platforms that we build for have std::aligned_alloc, however // since we never free these objects, we can over allocate and munge the // pointers to the correct alignment. void* memory = std::malloc(sizeof(RandenPoolEntry) + kAlignment); auto x = reinterpret_cast(memory); auto y = x % kAlignment; void* aligned = (y == 0) ? memory : reinterpret_cast(x + kAlignment - y); return new (aligned) RandenPoolEntry(); } // Allocate and initialize kPoolSize objects of type RandenPoolEntry. // // The initialization strategy is to initialize one object directly from // OS entropy, then to use that object to seed all of the individual // pool instances. void InitPoolURBG() { static constexpr size_t kSeedSize = RandenTraits::kStateBytes / sizeof(uint32_t); // Read the seed data from OS entropy once. uint32_t seed_material[kPoolSize * kSeedSize]; if (!random_internal::ReadSeedMaterialFromOSEntropy( absl::MakeSpan(seed_material))) { random_internal::ThrowSeedGenException(); } for (int i = 0; i < kPoolSize; i++) { shared_pools[i] = PoolAlignedAlloc(); shared_pools[i]->Init( absl::MakeSpan(&seed_material[i * kSeedSize], kSeedSize)); } } // Returns the pool entry for the current thread. RandenPoolEntry* GetPoolForCurrentThread() { absl::call_once(pool_once, InitPoolURBG); return shared_pools[GetPoolID()]; } } // namespace template typename RandenPool::result_type RandenPool::Generate() { auto* pool = GetPoolForCurrentThread(); return pool->Generate(); } template void RandenPool::Fill(absl::Span data) { auto* pool = GetPoolForCurrentThread(); pool->Fill(reinterpret_cast(data.data()), data.size() * sizeof(result_type)); } template class RandenPool; template class RandenPool; template class RandenPool; template class RandenPool; } // namespace random_internal ABSL_NAMESPACE_END } // namespace absl