// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/numeric/int128.h" #include #include #include #include #include #include #include "gtest/gtest.h" #include "absl/base/internal/cycleclock.h" #include "absl/hash/hash_testing.h" #include "absl/meta/type_traits.h" #if defined(_MSC_VER) && _MSC_VER == 1900 // Disable "unary minus operator applied to unsigned type" warnings in Microsoft // Visual C++ 14 (2015). #pragma warning(disable:4146) #endif namespace { template class Uint128IntegerTraitsTest : public ::testing::Test {}; typedef ::testing::Types // NOLINT(runtime/int) IntegerTypes; template class Uint128FloatTraitsTest : public ::testing::Test {}; typedef ::testing::Types FloatingPointTypes; TYPED_TEST_SUITE(Uint128IntegerTraitsTest, IntegerTypes); TYPED_TEST(Uint128IntegerTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from TypeParam"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::uint128"); } TYPED_TEST_SUITE(Uint128FloatTraitsTest, FloatingPointTypes); TYPED_TEST(Uint128FloatTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from TypeParam"); static_assert(!std::is_assignable::value, "absl::uint128 must not be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::uint128"); } #ifdef ABSL_HAVE_INTRINSIC_INT128 // These type traits done separately as TYPED_TEST requires typeinfo, and not // all platforms have this for __int128 even though they define the type. TEST(Uint128, IntrinsicTypeTraitsTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from __int128"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from __int128"); static_assert(!std::is_assignable<__int128&, absl::uint128>::value, "__int128 must not be assignable from absl::uint128"); static_assert(std::is_constructible::value, "absl::uint128 must be constructible from unsigned __int128"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from unsigned __int128"); static_assert(!std::is_assignable::value, "unsigned __int128 must not be assignable from absl::uint128"); } #endif // ABSL_HAVE_INTRINSIC_INT128 TEST(Uint128, TrivialTraitsTest) { static_assert(absl::is_trivially_default_constructible::value, ""); static_assert(absl::is_trivially_copy_constructible::value, ""); static_assert(absl::is_trivially_copy_assignable::value, ""); static_assert(std::is_trivially_destructible::value, ""); } TEST(Uint128, AllTests) { absl::uint128 zero = 0; absl::uint128 one = 1; absl::uint128 one_2arg = absl::MakeUint128(0, 1); absl::uint128 two = 2; absl::uint128 three = 3; absl::uint128 big = absl::MakeUint128(2000, 2); absl::uint128 big_minus_one = absl::MakeUint128(2000, 1); absl::uint128 bigger = absl::MakeUint128(2001, 1); absl::uint128 biggest = absl::Uint128Max(); absl::uint128 high_low = absl::MakeUint128(1, 0); absl::uint128 low_high = absl::MakeUint128(0, std::numeric_limits::max()); EXPECT_LT(one, two); EXPECT_GT(two, one); EXPECT_LT(one, big); EXPECT_LT(one, big); EXPECT_EQ(one, one_2arg); EXPECT_NE(one, two); EXPECT_GT(big, one); EXPECT_GE(big, two); EXPECT_GE(big, big_minus_one); EXPECT_GT(big, big_minus_one); EXPECT_LT(big_minus_one, big); EXPECT_LE(big_minus_one, big); EXPECT_NE(big_minus_one, big); EXPECT_LT(big, biggest); EXPECT_LE(big, biggest); EXPECT_GT(biggest, big); EXPECT_GE(biggest, big); EXPECT_EQ(big, ~~big); EXPECT_EQ(one, one | one); EXPECT_EQ(big, big | big); EXPECT_EQ(one, one | zero); EXPECT_EQ(one, one & one); EXPECT_EQ(big, big & big); EXPECT_EQ(zero, one & zero); EXPECT_EQ(zero, big & ~big); EXPECT_EQ(zero, one ^ one); EXPECT_EQ(zero, big ^ big); EXPECT_EQ(one, one ^ zero); // Shift operators. EXPECT_EQ(big, big << 0); EXPECT_EQ(big, big >> 0); EXPECT_GT(big << 1, big); EXPECT_LT(big >> 1, big); EXPECT_EQ(big, (big << 10) >> 10); EXPECT_EQ(big, (big >> 1) << 1); EXPECT_EQ(one, (one << 80) >> 80); EXPECT_EQ(zero, (one >> 80) << 80); // Shift assignments. absl::uint128 big_copy = big; EXPECT_EQ(big << 0, big_copy <<= 0); big_copy = big; EXPECT_EQ(big >> 0, big_copy >>= 0); big_copy = big; EXPECT_EQ(big << 1, big_copy <<= 1); big_copy = big; EXPECT_EQ(big >> 1, big_copy >>= 1); big_copy = big; EXPECT_EQ(big << 10, big_copy <<= 10); big_copy = big; EXPECT_EQ(big >> 10, big_copy >>= 10); big_copy = big; EXPECT_EQ(big << 64, big_copy <<= 64); big_copy = big; EXPECT_EQ(big >> 64, big_copy >>= 64); big_copy = big; EXPECT_EQ(big << 73, big_copy <<= 73); big_copy = big; EXPECT_EQ(big >> 73, big_copy >>= 73); EXPECT_EQ(absl::Uint128High64(biggest), std::numeric_limits::max()); EXPECT_EQ(absl::Uint128Low64(biggest), std::numeric_limits::max()); EXPECT_EQ(zero + one, one); EXPECT_EQ(one + one, two); EXPECT_EQ(big_minus_one + one, big); EXPECT_EQ(one - one, zero); EXPECT_EQ(one - zero, one); EXPECT_EQ(zero - one, biggest); EXPECT_EQ(big - big, zero); EXPECT_EQ(big - one, big_minus_one); EXPECT_EQ(big + std::numeric_limits::max(), bigger); EXPECT_EQ(biggest + 1, zero); EXPECT_EQ(zero - 1, biggest); EXPECT_EQ(high_low - one, low_high); EXPECT_EQ(low_high + one, high_low); EXPECT_EQ(absl::Uint128High64((absl::uint128(1) << 64) - 1), 0); EXPECT_EQ(absl::Uint128Low64((absl::uint128(1) << 64) - 1), std::numeric_limits::max()); EXPECT_TRUE(!!one); EXPECT_TRUE(!!high_low); EXPECT_FALSE(!!zero); EXPECT_FALSE(!one); EXPECT_FALSE(!high_low); EXPECT_TRUE(!zero); EXPECT_TRUE(zero == 0); // NOLINT(readability/check) EXPECT_FALSE(zero != 0); // NOLINT(readability/check) EXPECT_FALSE(one == 0); // NOLINT(readability/check) EXPECT_TRUE(one != 0); // NOLINT(readability/check) EXPECT_FALSE(high_low == 0); // NOLINT(readability/check) EXPECT_TRUE(high_low != 0); // NOLINT(readability/check) absl::uint128 test = zero; EXPECT_EQ(++test, one); EXPECT_EQ(test, one); EXPECT_EQ(test++, one); EXPECT_EQ(test, two); EXPECT_EQ(test -= 2, zero); EXPECT_EQ(test, zero); EXPECT_EQ(test += 2, two); EXPECT_EQ(test, two); EXPECT_EQ(--test, one); EXPECT_EQ(test, one); EXPECT_EQ(test--, one); EXPECT_EQ(test, zero); EXPECT_EQ(test |= three, three); EXPECT_EQ(test &= one, one); EXPECT_EQ(test ^= three, two); EXPECT_EQ(test >>= 1, one); EXPECT_EQ(test <<= 1, two); EXPECT_EQ(big, -(-big)); EXPECT_EQ(two, -((-one) - 1)); EXPECT_EQ(absl::Uint128Max(), -one); EXPECT_EQ(zero, -zero); EXPECT_EQ(absl::Uint128Max(), absl::kuint128max); } TEST(Uint128, ConversionTests) { EXPECT_TRUE(absl::MakeUint128(1, 0)); #ifdef ABSL_HAVE_INTRINSIC_INT128 unsigned __int128 intrinsic = (static_cast(0x3a5b76c209de76f6) << 64) + 0x1f25e1d63a2b46c5; absl::uint128 custom = absl::MakeUint128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5); EXPECT_EQ(custom, absl::uint128(intrinsic)); EXPECT_EQ(custom, absl::uint128(static_cast<__int128>(intrinsic))); EXPECT_EQ(intrinsic, static_cast(custom)); EXPECT_EQ(intrinsic, static_cast<__int128>(custom)); #endif // ABSL_HAVE_INTRINSIC_INT128 // verify that an integer greater than 2**64 that can be stored precisely // inside a double is converted to a absl::uint128 without loss of // information. double precise_double = 0x530e * std::pow(2.0, 64.0) + 0xda74000000000000; absl::uint128 from_precise_double(precise_double); absl::uint128 from_precise_ints = absl::MakeUint128(0x530e, 0xda74000000000000); EXPECT_EQ(from_precise_double, from_precise_ints); EXPECT_DOUBLE_EQ(static_cast(from_precise_ints), precise_double); double approx_double = 0xffffeeeeddddcccc * std::pow(2.0, 64.0) + 0xbbbbaaaa99998888; absl::uint128 from_approx_double(approx_double); EXPECT_DOUBLE_EQ(static_cast(from_approx_double), approx_double); double round_to_zero = 0.7; double round_to_five = 5.8; double round_to_nine = 9.3; EXPECT_EQ(static_cast(round_to_zero), 0); EXPECT_EQ(static_cast(round_to_five), 5); EXPECT_EQ(static_cast(round_to_nine), 9); absl::uint128 highest_precision_in_long_double = ~absl::uint128{} >> (128 - std::numeric_limits::digits); EXPECT_EQ(highest_precision_in_long_double, static_cast( static_cast(highest_precision_in_long_double))); // Apply a mask just to make sure all the bits are the right place. const absl::uint128 arbitrary_mask = absl::MakeUint128(0xa29f622677ded751, 0xf8ca66add076f468); EXPECT_EQ(highest_precision_in_long_double & arbitrary_mask, static_cast(static_cast( highest_precision_in_long_double & arbitrary_mask))); EXPECT_EQ(static_cast(-0.1L), 0); } TEST(Uint128, OperatorAssignReturnRef) { absl::uint128 v(1); (v += 4) -= 3; EXPECT_EQ(2, v); } TEST(Uint128, Multiply) { absl::uint128 a, b, c; // Zero test. a = 0; b = 0; c = a * b; EXPECT_EQ(0, c); // Max carries. a = absl::uint128(0) - 1; b = absl::uint128(0) - 1; c = a * b; EXPECT_EQ(1, c); // Self-operation with max carries. c = absl::uint128(0) - 1; c *= c; EXPECT_EQ(1, c); // 1-bit x 1-bit. for (int i = 0; i < 64; ++i) { for (int j = 0; j < 64; ++j) { a = absl::uint128(1) << i; b = absl::uint128(1) << j; c = a * b; EXPECT_EQ(absl::uint128(1) << (i + j), c); } } // Verified with dc. a = absl::MakeUint128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888); b = absl::MakeUint128(0x7777666655554444, 0x3333222211110000); c = a * b; EXPECT_EQ(absl::MakeUint128(0x530EDA741C71D4C3, 0xBF25975319080000), c); EXPECT_EQ(0, c - b * a); EXPECT_EQ(a*a - b*b, (a+b) * (a-b)); // Verified with dc. a = absl::MakeUint128(0x0123456789abcdef, 0xfedcba9876543210); b = absl::MakeUint128(0x02468ace13579bdf, 0xfdb97531eca86420); c = a * b; EXPECT_EQ(absl::MakeUint128(0x97a87f4f261ba3f2, 0x342d0bbf48948200), c); EXPECT_EQ(0, c - b * a); EXPECT_EQ(a*a - b*b, (a+b) * (a-b)); } TEST(Uint128, AliasTests) { absl::uint128 x1 = absl::MakeUint128(1, 2); absl::uint128 x2 = absl::MakeUint128(2, 4); x1 += x1; EXPECT_EQ(x2, x1); absl::uint128 x3 = absl::MakeUint128(1, static_cast(1) << 63); absl::uint128 x4 = absl::MakeUint128(3, 0); x3 += x3; EXPECT_EQ(x4, x3); } TEST(Uint128, DivideAndMod) { using std::swap; // a := q * b + r absl::uint128 a, b, q, r; // Zero test. a = 0; b = 123; q = a / b; r = a % b; EXPECT_EQ(0, q); EXPECT_EQ(0, r); a = absl::MakeUint128(0x530eda741c71d4c3, 0xbf25975319080000); q = absl::MakeUint128(0x4de2cab081, 0x14c34ab4676e4bab); b = absl::uint128(0x1110001); r = absl::uint128(0x3eb455); ASSERT_EQ(a, q * b + r); // Sanity-check. absl::uint128 result_q, result_r; result_q = a / b; result_r = a % b; EXPECT_EQ(q, result_q); EXPECT_EQ(r, result_r); // Try the other way around. swap(q, b); result_q = a / b; result_r = a % b; EXPECT_EQ(q, result_q); EXPECT_EQ(r, result_r); // Restore. swap(b, q); // Dividend < divisor; result should be q:0 r:. swap(a, b); result_q = a / b; result_r = a % b; EXPECT_EQ(0, result_q); EXPECT_EQ(a, result_r); // Try the other way around. swap(a, q); result_q = a / b; result_r = a % b; EXPECT_EQ(0, result_q); EXPECT_EQ(a, result_r); // Restore. swap(q, a); swap(b, a); // Try a large remainder. b = a / 2 + 1; absl::uint128 expected_r = absl::MakeUint128(0x29876d3a0e38ea61, 0xdf92cba98c83ffff); // Sanity checks. ASSERT_EQ(a / 2 - 1, expected_r); ASSERT_EQ(a, b + expected_r); result_q = a / b; result_r = a % b; EXPECT_EQ(1, result_q); EXPECT_EQ(expected_r, result_r); } TEST(Uint128, DivideAndModRandomInputs) { const int kNumIters = 1 << 18; std::minstd_rand random(testing::UnitTest::GetInstance()->random_seed()); std::uniform_int_distribution uniform_uint64; for (int i = 0; i < kNumIters; ++i) { const absl::uint128 a = absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); const absl::uint128 b = absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); if (b == 0) { continue; // Avoid a div-by-zero. } const absl::uint128 q = a / b; const absl::uint128 r = a % b; ASSERT_EQ(a, b * q + r); } } TEST(Uint128, ConstexprTest) { constexpr absl::uint128 zero = absl::uint128(); constexpr absl::uint128 one = 1; constexpr absl::uint128 minus_two = -2; EXPECT_EQ(zero, absl::uint128(0)); EXPECT_EQ(one, absl::uint128(1)); EXPECT_EQ(minus_two, absl::MakeUint128(-1, -2)); } TEST(Uint128, NumericLimitsTest) { static_assert(std::numeric_limits::is_specialized, ""); static_assert(!std::numeric_limits::is_signed, ""); static_assert(std::numeric_limits::is_integer, ""); EXPECT_EQ(static_cast(128 * std::log10(2)), std::numeric_limits::digits10); EXPECT_EQ(0, std::numeric_limits::min()); EXPECT_EQ(0, std::numeric_limits::lowest()); EXPECT_EQ(absl::Uint128Max(), std::numeric_limits::max()); } TEST(Uint128, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ // Some simple values absl::uint128{0}, absl::uint128{1}, ~absl::uint128{}, // 64 bit limits absl::uint128{std::numeric_limits::max()}, absl::uint128{std::numeric_limits::max()} + 0, absl::uint128{std::numeric_limits::max()} + 1, absl::uint128{std::numeric_limits::max()} + 2, // Keeping high same absl::uint128{1} << 62, absl::uint128{1} << 63, // Keeping low same absl::uint128{1} << 64, absl::uint128{1} << 65, // 128 bit limits std::numeric_limits::max(), std::numeric_limits::max() - 1, std::numeric_limits::min() + 1, std::numeric_limits::min(), })); } } // namespace