// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/numeric/int128.h" #include #include #include #include #include #include #include "gtest/gtest.h" #include "absl/base/internal/cycleclock.h" #include "absl/hash/hash_testing.h" #include "absl/meta/type_traits.h" #if defined(_MSC_VER) && _MSC_VER == 1900 // Disable "unary minus operator applied to unsigned type" warnings in Microsoft // Visual C++ 14 (2015). #pragma warning(disable:4146) #endif namespace { template class Uint128IntegerTraitsTest : public ::testing::Test {}; typedef ::testing::Types // NOLINT(runtime/int) IntegerTypes; template class Uint128FloatTraitsTest : public ::testing::Test {}; typedef ::testing::Types FloatingPointTypes; TYPED_TEST_SUITE(Uint128IntegerTraitsTest, IntegerTypes); TYPED_TEST(Uint128IntegerTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from TypeParam"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::uint128"); } TYPED_TEST_SUITE(Uint128FloatTraitsTest, FloatingPointTypes); TYPED_TEST(Uint128FloatTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from TypeParam"); static_assert(!std::is_assignable::value, "absl::uint128 must not be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::uint128"); } #ifdef ABSL_HAVE_INTRINSIC_INT128 // These type traits done separately as TYPED_TEST requires typeinfo, and not // all platforms have this for __int128 even though they define the type. TEST(Uint128, IntrinsicTypeTraitsTest) { static_assert(std::is_constructible::value, "absl::uint128 must be constructible from __int128"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from __int128"); static_assert(!std::is_assignable<__int128&, absl::uint128>::value, "__int128 must not be assignable from absl::uint128"); static_assert(std::is_constructible::value, "absl::uint128 must be constructible from unsigned __int128"); static_assert(std::is_assignable::value, "absl::uint128 must be assignable from unsigned __int128"); static_assert(!std::is_assignable::value, "unsigned __int128 must not be assignable from absl::uint128"); } #endif // ABSL_HAVE_INTRINSIC_INT128 TEST(Uint128, TrivialTraitsTest) { static_assert(absl::is_trivially_default_constructible::value, ""); static_assert(absl::is_trivially_copy_constructible::value, ""); static_assert(absl::is_trivially_copy_assignable::value, ""); static_assert(std::is_trivially_destructible::value, ""); } TEST(Uint128, AllTests) { absl::uint128 zero = 0; absl::uint128 one = 1; absl::uint128 one_2arg = absl::MakeUint128(0, 1); absl::uint128 two = 2; absl::uint128 three = 3; absl::uint128 big = absl::MakeUint128(2000, 2); absl::uint128 big_minus_one = absl::MakeUint128(2000, 1); absl::uint128 bigger = absl::MakeUint128(2001, 1); absl::uint128 biggest = absl::Uint128Max(); absl::uint128 high_low = absl::MakeUint128(1, 0); absl::uint128 low_high = absl::MakeUint128(0, std::numeric_limits::max()); EXPECT_LT(one, two); EXPECT_GT(two, one); EXPECT_LT(one, big); EXPECT_LT(one, big); EXPECT_EQ(one, one_2arg); EXPECT_NE(one, two); EXPECT_GT(big, one); EXPECT_GE(big, two); EXPECT_GE(big, big_minus_one); EXPECT_GT(big, big_minus_one); EXPECT_LT(big_minus_one, big); EXPECT_LE(big_minus_one, big); EXPECT_NE(big_minus_one, big); EXPECT_LT(big, biggest); EXPECT_LE(big, biggest); EXPECT_GT(biggest, big); EXPECT_GE(biggest, big); EXPECT_EQ(big, ~~big); EXPECT_EQ(one, one | one); EXPECT_EQ(big, big | big); EXPECT_EQ(one, one | zero); EXPECT_EQ(one, one & one); EXPECT_EQ(big, big & big); EXPECT_EQ(zero, one & zero); EXPECT_EQ(zero, big & ~big); EXPECT_EQ(zero, one ^ one); EXPECT_EQ(zero, big ^ big); EXPECT_EQ(one, one ^ zero); // Shift operators. EXPECT_EQ(big, big << 0); EXPECT_EQ(big, big >> 0); EXPECT_GT(big << 1, big); EXPECT_LT(big >> 1, big); EXPECT_EQ(big, (big << 10) >> 10); EXPECT_EQ(big, (big >> 1) << 1); EXPECT_EQ(one, (one << 80) >> 80); EXPECT_EQ(zero, (one >> 80) << 80); // Shift assignments. absl::uint128 big_copy = big; EXPECT_EQ(big << 0, big_copy <<= 0); big_copy = big; EXPECT_EQ(big >> 0, big_copy >>= 0); big_copy = big; EXPECT_EQ(big << 1, big_copy <<= 1); big_copy = big; EXPECT_EQ(big >> 1, big_copy >>= 1); big_copy = big; EXPECT_EQ(big << 10, big_copy <<= 10); big_copy = big; EXPECT_EQ(big >> 10, big_copy >>= 10); big_copy = big; EXPECT_EQ(big << 64, big_copy <<= 64); big_copy = big; EXPECT_EQ(big >> 64, big_copy >>= 64); big_copy = big; EXPECT_EQ(big << 73, big_copy <<= 73); big_copy = big; EXPECT_EQ(big >> 73, big_copy >>= 73); EXPECT_EQ(absl::Uint128High64(biggest), std::numeric_limits::max()); EXPECT_EQ(absl::Uint128Low64(biggest), std::numeric_limits::max()); EXPECT_EQ(zero + one, one); EXPECT_EQ(one + one, two); EXPECT_EQ(big_minus_one + one, big); EXPECT_EQ(one - one, zero); EXPECT_EQ(one - zero, one); EXPECT_EQ(zero - one, biggest); EXPECT_EQ(big - big, zero); EXPECT_EQ(big - one, big_minus_one); EXPECT_EQ(big + std::numeric_limits::max(), bigger); EXPECT_EQ(biggest + 1, zero); EXPECT_EQ(zero - 1, biggest); EXPECT_EQ(high_low - one, low_high); EXPECT_EQ(low_high + one, high_low); EXPECT_EQ(absl::Uint128High64((absl::uint128(1) << 64) - 1), 0); EXPECT_EQ(absl::Uint128Low64((absl::uint128(1) << 64) - 1), std::numeric_limits::max()); EXPECT_TRUE(!!one); EXPECT_TRUE(!!high_low); EXPECT_FALSE(!!zero); EXPECT_FALSE(!one); EXPECT_FALSE(!high_low); EXPECT_TRUE(!zero); EXPECT_TRUE(zero == 0); // NOLINT(readability/check) EXPECT_FALSE(zero != 0); // NOLINT(readability/check) EXPECT_FALSE(one == 0); // NOLINT(readability/check) EXPECT_TRUE(one != 0); // NOLINT(readability/check) EXPECT_FALSE(high_low == 0); // NOLINT(readability/check) EXPECT_TRUE(high_low != 0); // NOLINT(readability/check) absl::uint128 test = zero; EXPECT_EQ(++test, one); EXPECT_EQ(test, one); EXPECT_EQ(test++, one); EXPECT_EQ(test, two); EXPECT_EQ(test -= 2, zero); EXPECT_EQ(test, zero); EXPECT_EQ(test += 2, two); EXPECT_EQ(test, two); EXPECT_EQ(--test, one); EXPECT_EQ(test, one); EXPECT_EQ(test--, one); EXPECT_EQ(test, zero); EXPECT_EQ(test |= three, three); EXPECT_EQ(test &= one, one); EXPECT_EQ(test ^= three, two); EXPECT_EQ(test >>= 1, one); EXPECT_EQ(test <<= 1, two); EXPECT_EQ(big, -(-big)); EXPECT_EQ(two, -((-one) - 1)); EXPECT_EQ(absl::Uint128Max(), -one); EXPECT_EQ(zero, -zero); EXPECT_EQ(absl::Uint128Max(), absl::kuint128max); } TEST(Uint128, ConversionTests) { EXPECT_TRUE(absl::MakeUint128(1, 0)); #ifdef ABSL_HAVE_INTRINSIC_INT128 unsigned __int128 intrinsic = (static_cast(0x3a5b76c209de76f6) << 64) + 0x1f25e1d63a2b46c5; absl::uint128 custom = absl::MakeUint128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5); EXPECT_EQ(custom, absl::uint128(intrinsic)); EXPECT_EQ(custom, absl::uint128(static_cast<__int128>(intrinsic))); EXPECT_EQ(intrinsic, static_cast(custom)); EXPECT_EQ(intrinsic, static_cast<__int128>(custom)); #endif // ABSL_HAVE_INTRINSIC_INT128 // verify that an integer greater than 2**64 that can be stored precisely // inside a double is converted to a absl::uint128 without loss of // information. double precise_double = 0x530e * std::pow(2.0, 64.0) + 0xda74000000000000; absl::uint128 from_precise_double(precise_double); absl::uint128 from_precise_ints = absl::MakeUint128(0x530e, 0xda74000000000000); EXPECT_EQ(from_precise_double, from_precise_ints); EXPECT_DOUBLE_EQ(static_cast(from_precise_ints), precise_double); double approx_double = 0xffffeeeeddddcccc * std::pow(2.0, 64.0) + 0xbbbbaaaa99998888; absl::uint128 from_approx_double(approx_double); EXPECT_DOUBLE_EQ(static_cast(from_approx_double), approx_double); double round_to_zero = 0.7; double round_to_five = 5.8; double round_to_nine = 9.3; EXPECT_EQ(static_cast(round_to_zero), 0); EXPECT_EQ(static_cast(round_to_five), 5); EXPECT_EQ(static_cast(round_to_nine), 9); absl::uint128 highest_precision_in_long_double = ~absl::uint128{} >> (128 - std::numeric_limits::digits); EXPECT_EQ(highest_precision_in_long_double, static_cast( static_cast(highest_precision_in_long_double))); // Apply a mask just to make sure all the bits are the right place. const absl::uint128 arbitrary_mask = absl::MakeUint128(0xa29f622677ded751, 0xf8ca66add076f468); EXPECT_EQ(highest_precision_in_long_double & arbitrary_mask, static_cast(static_cast( highest_precision_in_long_double & arbitrary_mask))); EXPECT_EQ(static_cast(-0.1L), 0); } TEST(Uint128, OperatorAssignReturnRef) { absl::uint128 v(1); (v += 4) -= 3; EXPECT_EQ(2, v); } TEST(Uint128, Multiply) { absl::uint128 a, b, c; // Zero test. a = 0; b = 0; c = a * b; EXPECT_EQ(0, c); // Max carries. a = absl::uint128(0) - 1; b = absl::uint128(0) - 1; c = a * b; EXPECT_EQ(1, c); // Self-operation with max carries. c = absl::uint128(0) - 1; c *= c; EXPECT_EQ(1, c); // 1-bit x 1-bit. for (int i = 0; i < 64; ++i) { for (int j = 0; j < 64; ++j) { a = absl::uint128(1) << i; b = absl::uint128(1) << j; c = a * b; EXPECT_EQ(absl::uint128(1) << (i + j), c); } } // Verified with dc. a = absl::MakeUint128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888); b = absl::MakeUint128(0x7777666655554444, 0x3333222211110000); c = a * b; EXPECT_EQ(absl::MakeUint128(0x530EDA741C71D4C3, 0xBF25975319080000), c); EXPECT_EQ(0, c - b * a); EXPECT_EQ(a*a - b*b, (a+b) * (a-b)); // Verified with dc. a = absl::MakeUint128(0x0123456789abcdef, 0xfedcba9876543210); b = absl::MakeUint128(0x02468ace13579bdf, 0xfdb97531eca86420); c = a * b; EXPECT_EQ(absl::MakeUint128(0x97a87f4f261ba3f2, 0x342d0bbf48948200), c); EXPECT_EQ(0, c - b * a); EXPECT_EQ(a*a - b*b, (a+b) * (a-b)); } TEST(Uint128, AliasTests) { absl::uint128 x1 = absl::MakeUint128(1, 2); absl::uint128 x2 = absl::MakeUint128(2, 4); x1 += x1; EXPECT_EQ(x2, x1); absl::uint128 x3 = absl::MakeUint128(1, static_cast(1) << 63); absl::uint128 x4 = absl::MakeUint128(3, 0); x3 += x3; EXPECT_EQ(x4, x3); } TEST(Uint128, DivideAndMod) { using std::swap; // a := q * b + r absl::uint128 a, b, q, r; // Zero test. a = 0; b = 123; q = a / b; r = a % b; EXPECT_EQ(0, q); EXPECT_EQ(0, r); a = absl::MakeUint128(0x530eda741c71d4c3, 0xbf25975319080000); q = absl::MakeUint128(0x4de2cab081, 0x14c34ab4676e4bab); b = absl::uint128(0x1110001); r = absl::uint128(0x3eb455); ASSERT_EQ(a, q * b + r); // Sanity-check. absl::uint128 result_q, result_r; result_q = a / b; result_r = a % b; EXPECT_EQ(q, result_q); EXPECT_EQ(r, result_r); // Try the other way around. swap(q, b); result_q = a / b; result_r = a % b; EXPECT_EQ(q, result_q); EXPECT_EQ(r, result_r); // Restore. swap(b, q); // Dividend < divisor; result should be q:0 r:. swap(a, b); result_q = a / b; result_r = a % b; EXPECT_EQ(0, result_q); EXPECT_EQ(a, result_r); // Try the other way around. swap(a, q); result_q = a / b; result_r = a % b; EXPECT_EQ(0, result_q); EXPECT_EQ(a, result_r); // Restore. swap(q, a); swap(b, a); // Try a large remainder. b = a / 2 + 1; absl::uint128 expected_r = absl::MakeUint128(0x29876d3a0e38ea61, 0xdf92cba98c83ffff); // Sanity checks. ASSERT_EQ(a / 2 - 1, expected_r); ASSERT_EQ(a, b + expected_r); result_q = a / b; result_r = a % b; EXPECT_EQ(1, result_q); EXPECT_EQ(expected_r, result_r); } TEST(Uint128, DivideAndModRandomInputs) { const int kNumIters = 1 << 18; std::minstd_rand random(testing::UnitTest::GetInstance()->random_seed()); std::uniform_int_distribution uniform_uint64; for (int i = 0; i < kNumIters; ++i) { const absl::uint128 a = absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); const absl::uint128 b = absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); if (b == 0) { continue; // Avoid a div-by-zero. } const absl::uint128 q = a / b; const absl::uint128 r = a % b; ASSERT_EQ(a, b * q + r); } } TEST(Uint128, ConstexprTest) { constexpr absl::uint128 zero = absl::uint128(); constexpr absl::uint128 one = 1; constexpr absl::uint128 minus_two = -2; EXPECT_EQ(zero, absl::uint128(0)); EXPECT_EQ(one, absl::uint128(1)); EXPECT_EQ(minus_two, absl::MakeUint128(-1, -2)); } TEST(Uint128, NumericLimitsTest) { static_assert(std::numeric_limits::is_specialized, ""); static_assert(!std::numeric_limits::is_signed, ""); static_assert(std::numeric_limits::is_integer, ""); EXPECT_EQ(static_cast(128 * std::log10(2)), std::numeric_limits::digits10); EXPECT_EQ(0, std::numeric_limits::min()); EXPECT_EQ(0, std::numeric_limits::lowest()); EXPECT_EQ(absl::Uint128Max(), std::numeric_limits::max()); } TEST(Uint128, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ // Some simple values absl::uint128{0}, absl::uint128{1}, ~absl::uint128{}, // 64 bit limits absl::uint128{std::numeric_limits::max()}, absl::uint128{std::numeric_limits::max()} + 0, absl::uint128{std::numeric_limits::max()} + 1, absl::uint128{std::numeric_limits::max()} + 2, // Keeping high same absl::uint128{1} << 62, absl::uint128{1} << 63, // Keeping low same absl::uint128{1} << 64, absl::uint128{1} << 65, // 128 bit limits std::numeric_limits::max(), std::numeric_limits::max() - 1, std::numeric_limits::min() + 1, std::numeric_limits::min(), })); } TEST(Int128Uint128, ConversionTest) { absl::int128 nonnegative_signed_values[] = { 0, 1, 0xffeeddccbbaa9988, absl::MakeInt128(0x7766554433221100, 0), absl::MakeInt128(0x1234567890abcdef, 0xfedcba0987654321), absl::Int128Max()}; for (absl::int128 value : nonnegative_signed_values) { EXPECT_EQ(value, absl::int128(absl::uint128(value))); absl::uint128 assigned_value; assigned_value = value; EXPECT_EQ(value, absl::int128(assigned_value)); } absl::int128 negative_values[] = { -1, -0x1234567890abcdef, absl::MakeInt128(-0x5544332211ffeedd, 0), -absl::MakeInt128(0x76543210fedcba98, 0xabcdef0123456789)}; for (absl::int128 value : negative_values) { EXPECT_EQ(absl::uint128(-value), -absl::uint128(value)); absl::uint128 assigned_value; assigned_value = value; EXPECT_EQ(absl::uint128(-value), -assigned_value); } } template class Int128IntegerTraitsTest : public ::testing::Test {}; TYPED_TEST_SUITE(Int128IntegerTraitsTest, IntegerTypes); TYPED_TEST(Int128IntegerTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::int128 must be constructible from TypeParam"); static_assert(std::is_assignable::value, "absl::int128 must be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::int128"); } template class Int128FloatTraitsTest : public ::testing::Test {}; TYPED_TEST_SUITE(Int128FloatTraitsTest, FloatingPointTypes); TYPED_TEST(Int128FloatTraitsTest, ConstructAssignTest) { static_assert(std::is_constructible::value, "absl::int128 must be constructible from TypeParam"); static_assert(!std::is_assignable::value, "absl::int128 must not be assignable from TypeParam"); static_assert(!std::is_assignable::value, "TypeParam must not be assignable from absl::int128"); } #ifdef ABSL_HAVE_INTRINSIC_INT128 // These type traits done separately as TYPED_TEST requires typeinfo, and not // all platforms have this for __int128 even though they define the type. TEST(Int128, IntrinsicTypeTraitsTest) { static_assert(std::is_constructible::value, "absl::int128 must be constructible from __int128"); static_assert(std::is_assignable::value, "absl::int128 must be assignable from __int128"); static_assert(!std::is_assignable<__int128&, absl::int128>::value, "__int128 must not be assignable from absl::int128"); static_assert(std::is_constructible::value, "absl::int128 must be constructible from unsigned __int128"); static_assert(!std::is_assignable::value, "absl::int128 must be assignable from unsigned __int128"); static_assert(!std::is_assignable::value, "unsigned __int128 must not be assignable from absl::int128"); } #endif // ABSL_HAVE_INTRINSIC_INT128 TEST(Int128, TrivialTraitsTest) { static_assert(absl::is_trivially_default_constructible::value, ""); static_assert(absl::is_trivially_copy_constructible::value, ""); static_assert(absl::is_trivially_copy_assignable::value, ""); static_assert(std::is_trivially_destructible::value, ""); } TEST(Int128, BoolConversionTest) { EXPECT_FALSE(absl::int128(0)); for (int i = 0; i < 64; ++i) { EXPECT_TRUE(absl::MakeInt128(0, uint64_t{1} << i)); } for (int i = 0; i < 63; ++i) { EXPECT_TRUE(absl::MakeInt128(int64_t{1} << i, 0)); } EXPECT_TRUE(absl::Int128Min()); EXPECT_EQ(absl::int128(1), absl::int128(true)); EXPECT_EQ(absl::int128(0), absl::int128(false)); } template class Int128IntegerConversionTest : public ::testing::Test {}; TYPED_TEST_SUITE(Int128IntegerConversionTest, IntegerTypes); TYPED_TEST(Int128IntegerConversionTest, RoundTripTest) { EXPECT_EQ(TypeParam{0}, static_cast(absl::int128(0))); EXPECT_EQ(std::numeric_limits::min(), static_cast( absl::int128(std::numeric_limits::min()))); EXPECT_EQ(std::numeric_limits::max(), static_cast( absl::int128(std::numeric_limits::max()))); } template class Int128FloatConversionTest : public ::testing::Test {}; TYPED_TEST_SUITE(Int128FloatConversionTest, FloatingPointTypes); TYPED_TEST(Int128FloatConversionTest, ConstructAndCastTest) { // Conversions where the floating point values should be exactly the same. // 0x9f5b is a randomly chosen small value. for (int i = 0; i < 110; ++i) { // 110 = 126 - #bits in 0x9f5b SCOPED_TRACE(::testing::Message() << "i = " << i); TypeParam float_value = std::ldexp(static_cast(0x9f5b), i); absl::int128 int_value = absl::int128(0x9f5b) << i; EXPECT_EQ(float_value, static_cast(int_value)); EXPECT_EQ(-float_value, static_cast(-int_value)); EXPECT_EQ(int_value, absl::int128(float_value)); EXPECT_EQ(-int_value, absl::int128(-float_value)); } // Round trip conversions with a small sample of randomly generated uint64_t // values (less than int64_t max so that value * 2^64 fits into int128). uint64_t values[] = {0x6d4492c24fb86199, 0x26ead65e4cb359b5, 0x2c43407433ba3fd1, 0x3b574ec668df6b55, 0x1c750e55a29f4f0f}; for (uint64_t value : values) { for (int i = 0; i <= 64; ++i) { SCOPED_TRACE(::testing::Message() << "value = " << value << "; i = " << i); TypeParam fvalue = std::ldexp(static_cast(value), i); EXPECT_DOUBLE_EQ(fvalue, static_cast(absl::int128(fvalue))); EXPECT_DOUBLE_EQ(-fvalue, static_cast(-absl::int128(fvalue))); EXPECT_DOUBLE_EQ(-fvalue, static_cast(absl::int128(-fvalue))); EXPECT_DOUBLE_EQ(fvalue, static_cast(-absl::int128(-fvalue))); } } // Round trip conversions with a small sample of random large positive values. absl::int128 large_values[] = { absl::MakeInt128(0x5b0640d96c7b3d9f, 0xb7a7189e51d18622), absl::MakeInt128(0x34bed042c6f65270, 0x73b236570669a089), absl::MakeInt128(0x43deba9e6da12724, 0xf7f0f83da686797d), absl::MakeInt128(0x71e8d383be4e5589, 0x75c3f96fb00752b6)}; for (absl::int128 value : large_values) { // Make value have as many significant bits as can be represented by // the mantissa, also making sure the highest and lowest bit in the range // are set. value >>= (127 - std::numeric_limits::digits); value |= absl::int128(1) << (std::numeric_limits::digits - 1); value |= 1; for (int i = 0; i < 127 - std::numeric_limits::digits; ++i) { absl::int128 int_value = value << i; EXPECT_EQ(int_value, static_cast(static_cast(int_value))); EXPECT_EQ(-int_value, static_cast(static_cast(-int_value))); } } // Small sample of checks that rounding is toward zero EXPECT_EQ(0, absl::int128(TypeParam(0.1))); EXPECT_EQ(17, absl::int128(TypeParam(17.8))); EXPECT_EQ(0, absl::int128(TypeParam(-0.8))); EXPECT_EQ(-53, absl::int128(TypeParam(-53.1))); EXPECT_EQ(0, absl::int128(TypeParam(0.5))); EXPECT_EQ(0, absl::int128(TypeParam(-0.5))); TypeParam just_lt_one = std::nexttoward(TypeParam(1), TypeParam(0)); EXPECT_EQ(0, absl::int128(just_lt_one)); TypeParam just_gt_minus_one = std::nexttoward(TypeParam(-1), TypeParam(0)); EXPECT_EQ(0, absl::int128(just_gt_minus_one)); // Check limits EXPECT_DOUBLE_EQ(std::ldexp(static_cast(1), 127), static_cast(absl::Int128Max())); EXPECT_DOUBLE_EQ(-std::ldexp(static_cast(1), 127), static_cast(absl::Int128Min())); } TEST(Int128, FactoryTest) { EXPECT_EQ(absl::int128(-1), absl::MakeInt128(-1, -1)); EXPECT_EQ(absl::int128(-31), absl::MakeInt128(-1, -31)); EXPECT_EQ(absl::int128(std::numeric_limits::min()), absl::MakeInt128(-1, std::numeric_limits::min())); EXPECT_EQ(absl::int128(0), absl::MakeInt128(0, 0)); EXPECT_EQ(absl::int128(1), absl::MakeInt128(0, 1)); EXPECT_EQ(absl::int128(std::numeric_limits::max()), absl::MakeInt128(0, std::numeric_limits::max())); } TEST(Int128, HighLowTest) { struct HighLowPair { int64_t high; uint64_t low; }; HighLowPair values[]{{0, 0}, {0, 1}, {1, 0}, {123, 456}, {-654, 321}}; for (const HighLowPair& pair : values) { absl::int128 value = absl::MakeInt128(pair.high, pair.low); EXPECT_EQ(pair.low, absl::Int128Low64(value)); EXPECT_EQ(pair.high, absl::Int128High64(value)); } } TEST(Int128, LimitsTest) { EXPECT_EQ(absl::MakeInt128(0x7fffffffffffffff, 0xffffffffffffffff), absl::Int128Max()); EXPECT_EQ(absl::Int128Max(), ~absl::Int128Min()); } #if defined(ABSL_HAVE_INTRINSIC_INT128) TEST(Int128, IntrinsicConversionTest) { __int128 intrinsic = (static_cast<__int128>(0x3a5b76c209de76f6) << 64) + 0x1f25e1d63a2b46c5; absl::int128 custom = absl::MakeInt128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5); EXPECT_EQ(custom, absl::int128(intrinsic)); EXPECT_EQ(intrinsic, static_cast<__int128>(custom)); } #endif // ABSL_HAVE_INTRINSIC_INT128 TEST(Int128, ConstexprTest) { constexpr absl::int128 zero = absl::int128(); constexpr absl::int128 one = 1; constexpr absl::int128 minus_two = -2; constexpr absl::int128 min = absl::Int128Min(); constexpr absl::int128 max = absl::Int128Max(); EXPECT_EQ(zero, absl::int128(0)); EXPECT_EQ(one, absl::int128(1)); EXPECT_EQ(minus_two, absl::MakeInt128(-1, -2)); EXPECT_GT(max, one); EXPECT_LT(min, minus_two); } TEST(Int128, ComparisonTest) { struct TestCase { absl::int128 smaller; absl::int128 larger; }; TestCase cases[] = { {absl::int128(0), absl::int128(123)}, {absl::MakeInt128(-12, 34), absl::MakeInt128(12, 34)}, {absl::MakeInt128(1, 1000), absl::MakeInt128(1000, 1)}, {absl::MakeInt128(-1000, 1000), absl::MakeInt128(-1, 1)}, }; for (const TestCase& pair : cases) { SCOPED_TRACE(::testing::Message() << "pair.smaller = " << pair.smaller << "; pair.larger = " << pair.larger); EXPECT_TRUE(pair.smaller == pair.smaller); // NOLINT(readability/check) EXPECT_TRUE(pair.larger == pair.larger); // NOLINT(readability/check) EXPECT_FALSE(pair.smaller == pair.larger); // NOLINT(readability/check) EXPECT_TRUE(pair.smaller != pair.larger); // NOLINT(readability/check) EXPECT_FALSE(pair.smaller != pair.smaller); // NOLINT(readability/check) EXPECT_FALSE(pair.larger != pair.larger); // NOLINT(readability/check) EXPECT_TRUE(pair.smaller < pair.larger); // NOLINT(readability/check) EXPECT_FALSE(pair.larger < pair.smaller); // NOLINT(readability/check) EXPECT_TRUE(pair.larger > pair.smaller); // NOLINT(readability/check) EXPECT_FALSE(pair.smaller > pair.larger); // NOLINT(readability/check) EXPECT_TRUE(pair.smaller <= pair.larger); // NOLINT(readability/check) EXPECT_FALSE(pair.larger <= pair.smaller); // NOLINT(readability/check) EXPECT_TRUE(pair.smaller <= pair.smaller); // NOLINT(readability/check) EXPECT_TRUE(pair.larger <= pair.larger); // NOLINT(readability/check) EXPECT_TRUE(pair.larger >= pair.smaller); // NOLINT(readability/check) EXPECT_FALSE(pair.smaller >= pair.larger); // NOLINT(readability/check) EXPECT_TRUE(pair.smaller >= pair.smaller); // NOLINT(readability/check) EXPECT_TRUE(pair.larger >= pair.larger); // NOLINT(readability/check) } } TEST(Int128, UnaryNegationTest) { int64_t values64[] = {0, 1, 12345, 0x4000000000000000, std::numeric_limits::max()}; for (int64_t value : values64) { SCOPED_TRACE(::testing::Message() << "value = " << value); EXPECT_EQ(absl::int128(-value), -absl::int128(value)); EXPECT_EQ(absl::int128(value), -absl::int128(-value)); EXPECT_EQ(absl::MakeInt128(-value, 0), -absl::MakeInt128(value, 0)); EXPECT_EQ(absl::MakeInt128(value, 0), -absl::MakeInt128(-value, 0)); } } TEST(Int128, LogicalNotTest) { EXPECT_TRUE(!absl::int128(0)); for (int i = 0; i < 64; ++i) { EXPECT_FALSE(!absl::MakeInt128(0, uint64_t{1} << i)); } for (int i = 0; i < 63; ++i) { EXPECT_FALSE(!absl::MakeInt128(int64_t{1} << i, 0)); } } TEST(Int128, AdditionSubtractionTest) { // 64 bit pairs that will not cause overflow / underflow. These test negative // carry; positive carry must be checked separately. std::pair cases[]{ {0, 0}, // 0, 0 {0, 2945781290834}, // 0, + {1908357619234, 0}, // +, 0 {0, -1204895918245}, // 0, - {-2957928523560, 0}, // -, 0 {89023982312461, 98346012567134}, // +, + {-63454234568239, -23456235230773}, // -, - {98263457263502, -21428561935925}, // +, - {-88235237438467, 15923659234573}, // -, + }; for (const auto& pair : cases) { SCOPED_TRACE(::testing::Message() << "pair = {" << pair.first << ", " << pair.second << '}'); EXPECT_EQ(absl::int128(pair.first + pair.second), absl::int128(pair.first) + absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.second + pair.first), absl::int128(pair.second) += absl::int128(pair.first)); EXPECT_EQ(absl::int128(pair.first - pair.second), absl::int128(pair.first) - absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.second - pair.first), absl::int128(pair.second) -= absl::int128(pair.first)); EXPECT_EQ( absl::MakeInt128(pair.second + pair.first, 0), absl::MakeInt128(pair.second, 0) + absl::MakeInt128(pair.first, 0)); EXPECT_EQ( absl::MakeInt128(pair.first + pair.second, 0), absl::MakeInt128(pair.first, 0) += absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.second - pair.first, 0), absl::MakeInt128(pair.second, 0) - absl::MakeInt128(pair.first, 0)); EXPECT_EQ( absl::MakeInt128(pair.first - pair.second, 0), absl::MakeInt128(pair.first, 0) -= absl::MakeInt128(pair.second, 0)); } // check positive carry EXPECT_EQ(absl::MakeInt128(31, 0), absl::MakeInt128(20, 1) + absl::MakeInt128(10, std::numeric_limits::max())); } TEST(Int128, IncrementDecrementTest) { absl::int128 value = 0; EXPECT_EQ(0, value++); EXPECT_EQ(1, value); EXPECT_EQ(1, value--); EXPECT_EQ(0, value); EXPECT_EQ(-1, --value); EXPECT_EQ(-1, value); EXPECT_EQ(0, ++value); EXPECT_EQ(0, value); } TEST(Int128, MultiplicationTest) { // 1 bit x 1 bit, and negative combinations for (int i = 0; i < 64; ++i) { for (int j = 0; j < 127 - i; ++j) { SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); absl::int128 a = absl::int128(1) << i; absl::int128 b = absl::int128(1) << j; absl::int128 c = absl::int128(1) << (i + j); EXPECT_EQ(c, a * b); EXPECT_EQ(-c, -a * b); EXPECT_EQ(-c, a * -b); EXPECT_EQ(c, -a * -b); EXPECT_EQ(c, absl::int128(a) *= b); EXPECT_EQ(-c, absl::int128(-a) *= b); EXPECT_EQ(-c, absl::int128(a) *= -b); EXPECT_EQ(c, absl::int128(-a) *= -b); } } // Pairs of random values that will not overflow signed 64-bit multiplication std::pair small_values[] = { {0x5e61, 0xf29f79ca14b4}, // +, + {0x3e033b, -0x612c0ee549}, // +, - {-0x052ce7e8, 0x7c728f0f}, // -, + {-0x3af7054626, -0xfb1e1d}, // -, - }; for (const std::pair& pair : small_values) { SCOPED_TRACE(::testing::Message() << "pair = {" << pair.first << ", " << pair.second << '}'); EXPECT_EQ(absl::int128(pair.first * pair.second), absl::int128(pair.first) * absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first * pair.second), absl::int128(pair.first) *= absl::int128(pair.second)); EXPECT_EQ(absl::MakeInt128(pair.first * pair.second, 0), absl::MakeInt128(pair.first, 0) * absl::int128(pair.second)); EXPECT_EQ(absl::MakeInt128(pair.first * pair.second, 0), absl::MakeInt128(pair.first, 0) *= absl::int128(pair.second)); } // Pairs of positive random values that will not overflow 64-bit // multiplication and can be left shifted by 32 without overflow std::pair small_values2[] = { {0x1bb0a110, 0x31487671}, {0x4792784e, 0x28add7d7}, {0x7b66553a, 0x11dff8ef}, }; for (const std::pair& pair : small_values2) { SCOPED_TRACE(::testing::Message() << "pair = {" << pair.first << ", " << pair.second << '}'); absl::int128 a = absl::int128(pair.first << 32); absl::int128 b = absl::int128(pair.second << 32); absl::int128 c = absl::MakeInt128(pair.first * pair.second, 0); EXPECT_EQ(c, a * b); EXPECT_EQ(-c, -a * b); EXPECT_EQ(-c, a * -b); EXPECT_EQ(c, -a * -b); EXPECT_EQ(c, absl::int128(a) *= b); EXPECT_EQ(-c, absl::int128(-a) *= b); EXPECT_EQ(-c, absl::int128(a) *= -b); EXPECT_EQ(c, absl::int128(-a) *= -b); } // check 0, 1, and -1 behavior with large values absl::int128 large_values[] = { {absl::MakeInt128(0xd66f061af02d0408, 0x727d2846cb475b53)}, {absl::MakeInt128(0x27b8d5ed6104452d, 0x03f8a33b0ee1df4f)}, {-absl::MakeInt128(0x621b6626b9e8d042, 0x27311ac99df00938)}, {-absl::MakeInt128(0x34e0656f1e95fb60, 0x4281cfd731257a47)}, }; for (absl::int128 value : large_values) { EXPECT_EQ(0, 0 * value); EXPECT_EQ(0, value * 0); EXPECT_EQ(0, absl::int128(0) *= value); EXPECT_EQ(0, value *= 0); EXPECT_EQ(value, 1 * value); EXPECT_EQ(value, value * 1); EXPECT_EQ(value, absl::int128(1) *= value); EXPECT_EQ(value, value *= 1); EXPECT_EQ(-value, -1 * value); EXPECT_EQ(-value, value * -1); EXPECT_EQ(-value, absl::int128(-1) *= value); EXPECT_EQ(-value, value *= -1); } // Manually calculated random large value cases EXPECT_EQ(absl::MakeInt128(0xcd0efd3442219bb, 0xde47c05bcd9df6e1), absl::MakeInt128(0x7c6448, 0x3bc4285c47a9d253) * 0x1a6037537b); EXPECT_EQ(-absl::MakeInt128(0x1f8f149850b1e5e6, 0x1e50d6b52d272c3e), -absl::MakeInt128(0x23, 0x2e68a513ca1b8859) * 0xe5a434cd14866e); EXPECT_EQ(-absl::MakeInt128(0x55cae732029d1fce, 0xca6474b6423263e4), 0xa9b98a8ddf66bc * -absl::MakeInt128(0x81, 0x672e58231e2469d7)); EXPECT_EQ(absl::MakeInt128(0x19c8b7620b507dc4, 0xfec042b71a5f29a4), -0x3e39341147 * -absl::MakeInt128(0x6a14b2, 0x5ed34cca42327b3c)); EXPECT_EQ(absl::MakeInt128(0xcd0efd3442219bb, 0xde47c05bcd9df6e1), absl::MakeInt128(0x7c6448, 0x3bc4285c47a9d253) *= 0x1a6037537b); EXPECT_EQ(-absl::MakeInt128(0x1f8f149850b1e5e6, 0x1e50d6b52d272c3e), -absl::MakeInt128(0x23, 0x2e68a513ca1b8859) *= 0xe5a434cd14866e); EXPECT_EQ(-absl::MakeInt128(0x55cae732029d1fce, 0xca6474b6423263e4), absl::int128(0xa9b98a8ddf66bc) *= -absl::MakeInt128(0x81, 0x672e58231e2469d7)); EXPECT_EQ(absl::MakeInt128(0x19c8b7620b507dc4, 0xfec042b71a5f29a4), absl::int128(-0x3e39341147) *= -absl::MakeInt128(0x6a14b2, 0x5ed34cca42327b3c)); } TEST(Int128, DivisionAndModuloTest) { // Check against 64 bit division and modulo operators with a sample of // randomly generated pairs. std::pair small_pairs[] = { {0x15f2a64138, 0x67da05}, {0x5e56d194af43045f, 0xcf1543fb99}, {0x15e61ed052036a, -0xc8e6}, {0x88125a341e85, -0xd23fb77683}, {-0xc06e20, 0x5a}, {-0x4f100219aea3e85d, 0xdcc56cb4efe993}, {-0x168d629105, -0xa7}, {-0x7b44e92f03ab2375, -0x6516}, }; for (const std::pair& pair : small_pairs) { SCOPED_TRACE(::testing::Message() << "pair = {" << pair.first << ", " << pair.second << '}'); absl::int128 dividend = pair.first; absl::int128 divisor = pair.second; int64_t quotient = pair.first / pair.second; int64_t remainder = pair.first % pair.second; EXPECT_EQ(quotient, dividend / divisor); EXPECT_EQ(quotient, absl::int128(dividend) /= divisor); EXPECT_EQ(remainder, dividend % divisor); EXPECT_EQ(remainder, absl::int128(dividend) %= divisor); } // Test behavior with 0, 1, and -1 with a sample of randomly generated large // values. absl::int128 values[] = { absl::MakeInt128(0x63d26ee688a962b2, 0x9e1411abda5c1d70), absl::MakeInt128(0x152f385159d6f986, 0xbf8d48ef63da395d), -absl::MakeInt128(0x3098d7567030038c, 0x14e7a8a098dc2164), -absl::MakeInt128(0x49a037aca35c809f, 0xa6a87525480ef330), }; for (absl::int128 value : values) { SCOPED_TRACE(::testing::Message() << "value = " << value); EXPECT_EQ(0, 0 / value); EXPECT_EQ(0, absl::int128(0) /= value); EXPECT_EQ(0, 0 % value); EXPECT_EQ(0, absl::int128(0) %= value); EXPECT_EQ(value, value / 1); EXPECT_EQ(value, absl::int128(value) /= 1); EXPECT_EQ(0, value % 1); EXPECT_EQ(0, absl::int128(value) %= 1); EXPECT_EQ(-value, value / -1); EXPECT_EQ(-value, absl::int128(value) /= -1); EXPECT_EQ(0, value % -1); EXPECT_EQ(0, absl::int128(value) %= -1); } // Min and max values EXPECT_EQ(0, absl::Int128Max() / absl::Int128Min()); EXPECT_EQ(absl::Int128Max(), absl::Int128Max() % absl::Int128Min()); EXPECT_EQ(-1, absl::Int128Min() / absl::Int128Max()); EXPECT_EQ(-1, absl::Int128Min() % absl::Int128Max()); // Power of two division and modulo of random large dividends absl::int128 positive_values[] = { absl::MakeInt128(0x21e1a1cc69574620, 0xe7ac447fab2fc869), absl::MakeInt128(0x32c2ff3ab89e66e8, 0x03379a613fd1ce74), absl::MakeInt128(0x6f32ca786184dcaf, 0x046f9c9ecb3a9ce1), absl::MakeInt128(0x1aeb469dd990e0ee, 0xda2740f243cd37eb), }; for (absl::int128 value : positive_values) { for (int i = 0; i < 127; ++i) { SCOPED_TRACE(::testing::Message() << "value = " << value << "; i = " << i); absl::int128 power_of_two = absl::int128(1) << i; EXPECT_EQ(value >> i, value / power_of_two); EXPECT_EQ(value >> i, absl::int128(value) /= power_of_two); EXPECT_EQ(value & (power_of_two - 1), value % power_of_two); EXPECT_EQ(value & (power_of_two - 1), absl::int128(value) %= power_of_two); } } // Manually calculated cases with random large dividends struct DivisionModCase { absl::int128 dividend; absl::int128 divisor; absl::int128 quotient; absl::int128 remainder; }; DivisionModCase manual_cases[] = { {absl::MakeInt128(0x6ada48d489007966, 0x3c9c5c98150d5d69), absl::MakeInt128(0x8bc308fb, 0x8cb9cc9a3b803344), 0xc3b87e08, absl::MakeInt128(0x1b7db5e1, 0xd9eca34b7af04b49)}, {absl::MakeInt128(0xd6946511b5b, 0x4886c5c96546bf5f), -absl::MakeInt128(0x263b, 0xfd516279efcfe2dc), -0x59cbabf0, absl::MakeInt128(0x622, 0xf462909155651d1f)}, {-absl::MakeInt128(0x33db734f9e8d1399, 0x8447ac92482bca4d), 0x37495078240, -absl::MakeInt128(0xf01f1, 0xbc0368bf9a77eae8), -0x21a508f404d}, {-absl::MakeInt128(0x13f837b409a07e7d, 0x7fc8e248a7d73560), -0x1b9f, absl::MakeInt128(0xb9157556d724, 0xb14f635714d7563e), -0x1ade}, }; for (const DivisionModCase test_case : manual_cases) { EXPECT_EQ(test_case.quotient, test_case.dividend / test_case.divisor); EXPECT_EQ(test_case.quotient, absl::int128(test_case.dividend) /= test_case.divisor); EXPECT_EQ(test_case.remainder, test_case.dividend % test_case.divisor); EXPECT_EQ(test_case.remainder, absl::int128(test_case.dividend) %= test_case.divisor); } } TEST(Int128, BitwiseLogicTest) { EXPECT_EQ(absl::int128(-1), ~absl::int128(0)); absl::int128 values[]{ 0, -1, 0xde400bee05c3ff6b, absl::MakeInt128(0x7f32178dd81d634a, 0), absl::MakeInt128(0xaf539057055613a9, 0x7d104d7d946c2e4d)}; for (absl::int128 value : values) { EXPECT_EQ(value, ~~value); EXPECT_EQ(value, value | value); EXPECT_EQ(value, value & value); EXPECT_EQ(0, value ^ value); EXPECT_EQ(value, absl::int128(value) |= value); EXPECT_EQ(value, absl::int128(value) &= value); EXPECT_EQ(0, absl::int128(value) ^= value); EXPECT_EQ(value, value | 0); EXPECT_EQ(0, value & 0); EXPECT_EQ(value, value ^ 0); EXPECT_EQ(absl::int128(-1), value | absl::int128(-1)); EXPECT_EQ(value, value & absl::int128(-1)); EXPECT_EQ(~value, value ^ absl::int128(-1)); } // small sample of randomly generated int64_t's std::pair pairs64[]{ {0x7f86797f5e991af4, 0x1ee30494fb007c97}, {0x0b278282bacf01af, 0x58780e0a57a49e86}, {0x059f266ccb93a666, 0x3d5b731bae9286f5}, {0x63c0c4820f12108c, 0x58166713c12e1c3a}, {0x381488bb2ed2a66e, 0x2220a3eb76a3698c}, {0x2a0a0dfb81e06f21, 0x4b60585927f5523c}, {0x555b1c3a03698537, 0x25478cd19d8e53cb}, {0x4750f6f27d779225, 0x16397553c6ff05fc}, }; for (const std::pair& pair : pairs64) { SCOPED_TRACE(::testing::Message() << "pair = {" << pair.first << ", " << pair.second << '}'); EXPECT_EQ(absl::MakeInt128(~pair.first, ~pair.second), ~absl::MakeInt128(pair.first, pair.second)); EXPECT_EQ(absl::int128(pair.first & pair.second), absl::int128(pair.first) & absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first | pair.second), absl::int128(pair.first) | absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first ^ pair.second), absl::int128(pair.first) ^ absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first & pair.second), absl::int128(pair.first) &= absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first | pair.second), absl::int128(pair.first) |= absl::int128(pair.second)); EXPECT_EQ(absl::int128(pair.first ^ pair.second), absl::int128(pair.first) ^= absl::int128(pair.second)); EXPECT_EQ( absl::MakeInt128(pair.first & pair.second, 0), absl::MakeInt128(pair.first, 0) & absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.first | pair.second, 0), absl::MakeInt128(pair.first, 0) | absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.first ^ pair.second, 0), absl::MakeInt128(pair.first, 0) ^ absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.first & pair.second, 0), absl::MakeInt128(pair.first, 0) &= absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.first | pair.second, 0), absl::MakeInt128(pair.first, 0) |= absl::MakeInt128(pair.second, 0)); EXPECT_EQ( absl::MakeInt128(pair.first ^ pair.second, 0), absl::MakeInt128(pair.first, 0) ^= absl::MakeInt128(pair.second, 0)); } } TEST(Int128, BitwiseShiftTest) { for (int i = 0; i < 64; ++i) { for (int j = 0; j <= i; ++j) { // Left shift from j-th bit to i-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) << (i - j)); EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) <<= (i - j)); } } for (int i = 0; i < 63; ++i) { for (int j = 0; j < 64; ++j) { // Left shift from j-th bit to (i + 64)-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::int128(uint64_t{1} << j) << (i + 64 - j)); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::int128(uint64_t{1} << j) <<= (i + 64 - j)); } for (int j = 0; j <= i; ++j) { // Left shift from (j + 64)-th bit to (i + 64)-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::MakeInt128(uint64_t{1} << j, 0) << (i - j)); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::MakeInt128(uint64_t{1} << j, 0) <<= (i - j)); } } for (int i = 0; i < 64; ++i) { for (int j = i; j < 64; ++j) { // Right shift from j-th bit to i-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) >> (j - i)); EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) >>= (j - i)); } for (int j = 0; j < 63; ++j) { // Right shift from (j + 64)-th bit to i-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(uint64_t{1} << i, absl::MakeInt128(uint64_t{1} << j, 0) >> (j + 64 - i)); EXPECT_EQ(uint64_t{1} << i, absl::MakeInt128(uint64_t{1} << j, 0) >>= (j + 64 - i)); } } for (int i = 0; i < 63; ++i) { for (int j = i; j < 63; ++j) { // Right shift from (j + 64)-th bit to (i + 64)-th bit. SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::MakeInt128(uint64_t{1} << j, 0) >> (j - i)); EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0), absl::MakeInt128(uint64_t{1} << j, 0) >>= (j - i)); } } } TEST(Int128, NumericLimitsTest) { static_assert(std::numeric_limits::is_specialized, ""); static_assert(std::numeric_limits::is_signed, ""); static_assert(std::numeric_limits::is_integer, ""); EXPECT_EQ(static_cast(127 * std::log10(2)), std::numeric_limits::digits10); EXPECT_EQ(absl::Int128Min(), std::numeric_limits::min()); EXPECT_EQ(absl::Int128Min(), std::numeric_limits::lowest()); EXPECT_EQ(absl::Int128Max(), std::numeric_limits::max()); } } // namespace