// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // This file provides CityHash64() and related functions. // // It's probably possible to create even faster hash functions by // writing a program that systematically explores some of the space of // possible hash functions, by using SIMD instructions, or by // compromising on hash quality. #include "absl/hash/internal/city.h" #include // for memcpy and memset #include #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/unaligned_access.h" #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace hash_internal { #ifdef ABSL_IS_BIG_ENDIAN #define uint32_in_expected_order(x) (absl::gbswap_32(x)) #define uint64_in_expected_order(x) (absl::gbswap_64(x)) #else #define uint32_in_expected_order(x) (x) #define uint64_in_expected_order(x) (x) #endif static uint64_t Fetch64(const char *p) { return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p)); } static uint32_t Fetch32(const char *p) { return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p)); } // Some primes between 2^63 and 2^64 for various uses. static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; static const uint64_t k1 = 0xb492b66fbe98f273ULL; static const uint64_t k2 = 0x9ae16a3b2f90404fULL; // Magic numbers for 32-bit hashing. Copied from Murmur3. static const uint32_t c1 = 0xcc9e2d51; static const uint32_t c2 = 0x1b873593; // A 32-bit to 32-bit integer hash copied from Murmur3. static uint32_t fmix(uint32_t h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } static uint32_t Rotate32(uint32_t val, int shift) { // Avoid shifting by 32: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (32 - shift))); } #undef PERMUTE3 #define PERMUTE3(a, b, c) \ do { \ std::swap(a, b); \ std::swap(a, c); \ } while (0) static uint32_t Mur(uint32_t a, uint32_t h) { // Helper from Murmur3 for combining two 32-bit values. a *= c1; a = Rotate32(a, 17); a *= c2; h ^= a; h = Rotate32(h, 19); return h * 5 + 0xe6546b64; } static uint32_t Hash32Len13to24(const char *s, size_t len) { uint32_t a = Fetch32(s - 4 + (len >> 1)); uint32_t b = Fetch32(s + 4); uint32_t c = Fetch32(s + len - 8); uint32_t d = Fetch32(s + (len >> 1)); uint32_t e = Fetch32(s); uint32_t f = Fetch32(s + len - 4); uint32_t h = len; return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h))))))); } static uint32_t Hash32Len0to4(const char *s, size_t len) { uint32_t b = 0; uint32_t c = 9; for (size_t i = 0; i < len; i++) { signed char v = s[i]; b = b * c1 + v; c ^= b; } return fmix(Mur(b, Mur(len, c))); } static uint32_t Hash32Len5to12(const char *s, size_t len) { uint32_t a = len, b = len * 5, c = 9, d = b; a += Fetch32(s); b += Fetch32(s + len - 4); c += Fetch32(s + ((len >> 1) & 4)); return fmix(Mur(c, Mur(b, Mur(a, d)))); } uint32_t CityHash32(const char *s, size_t len) { if (len <= 24) { return len <= 12 ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) : Hash32Len13to24(s, len); } // len > 24 uint32_t h = len, g = c1 * len, f = g; uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2; uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2; uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2; uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2; uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2; h ^= a0; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; h ^= a2; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; g ^= a1; g = Rotate32(g, 19); g = g * 5 + 0xe6546b64; g ^= a3; g = Rotate32(g, 19); g = g * 5 + 0xe6546b64; f += a4; f = Rotate32(f, 19); f = f * 5 + 0xe6546b64; size_t iters = (len - 1) / 20; do { uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2; uint32_t b1 = Fetch32(s + 4); uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2; uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2; uint32_t b4 = Fetch32(s + 16); h ^= b0; h = Rotate32(h, 18); h = h * 5 + 0xe6546b64; f += b1; f = Rotate32(f, 19); f = f * c1; g += b2; g = Rotate32(g, 18); g = g * 5 + 0xe6546b64; h ^= b3 + b1; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; g ^= b4; g = absl::gbswap_32(g) * 5; h += b4 * 5; h = absl::gbswap_32(h); f += b0; PERMUTE3(f, h, g); s += 20; } while (--iters != 0); g = Rotate32(g, 11) * c1; g = Rotate32(g, 17) * c1; f = Rotate32(f, 11) * c1; f = Rotate32(f, 17) * c1; h = Rotate32(h + g, 19); h = h * 5 + 0xe6546b64; h = Rotate32(h, 17) * c1; h = Rotate32(h + f, 19); h = h * 5 + 0xe6546b64; h = Rotate32(h, 17) * c1; return h; } // Bitwise right rotate. Normally this will compile to a single // instruction, especially if the shift is a manifest constant. static uint64_t Rotate(uint64_t val, int shift) { // Avoid shifting by 64: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); } static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); } static uint64_t HashLen16(uint64_t u, uint64_t v) { return Hash128to64(uint128(u, v)); } static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) { // Murmur-inspired hashing. uint64_t a = (u ^ v) * mul; a ^= (a >> 47); uint64_t b = (v ^ a) * mul; b ^= (b >> 47); b *= mul; return b; } static uint64_t HashLen0to16(const char *s, size_t len) { if (len >= 8) { uint64_t mul = k2 + len * 2; uint64_t a = Fetch64(s) + k2; uint64_t b = Fetch64(s + len - 8); uint64_t c = Rotate(b, 37) * mul + a; uint64_t d = (Rotate(a, 25) + b) * mul; return HashLen16(c, d, mul); } if (len >= 4) { uint64_t mul = k2 + len * 2; uint64_t a = Fetch32(s); return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); } if (len > 0) { uint8_t a = s[0]; uint8_t b = s[len >> 1]; uint8_t c = s[len - 1]; uint32_t y = static_cast(a) + (static_cast(b) << 8); uint32_t z = len + (static_cast(c) << 2); return ShiftMix(y * k2 ^ z * k0) * k2; } return k2; } // This probably works well for 16-byte strings as well, but it may be overkill // in that case. static uint64_t HashLen17to32(const char *s, size_t len) { uint64_t mul = k2 + len * 2; uint64_t a = Fetch64(s) * k1; uint64_t b = Fetch64(s + 8); uint64_t c = Fetch64(s + len - 8) * mul; uint64_t d = Fetch64(s + len - 16) * k2; return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, a + Rotate(b + k2, 18) + c, mul); } // Return a 16-byte hash for 48 bytes. Quick and dirty. // Callers do best to use "random-looking" values for a and b. static std::pair WeakHashLen32WithSeeds(uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) { a += w; b = Rotate(b + a + z, 21); uint64_t c = a; a += x; a += y; b += Rotate(a, 44); return std::make_pair(a + z, b + c); } // Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. static std::pair WeakHashLen32WithSeeds(const char *s, uint64_t a, uint64_t b) { return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), Fetch64(s + 24), a, b); } // Return an 8-byte hash for 33 to 64 bytes. static uint64_t HashLen33to64(const char *s, size_t len) { uint64_t mul = k2 + len * 2; uint64_t a = Fetch64(s) * k2; uint64_t b = Fetch64(s + 8); uint64_t c = Fetch64(s + len - 24); uint64_t d = Fetch64(s + len - 32); uint64_t e = Fetch64(s + 16) * k2; uint64_t f = Fetch64(s + 24) * 9; uint64_t g = Fetch64(s + len - 8); uint64_t h = Fetch64(s + len - 16) * mul; uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; uint64_t v = ((a + g) ^ d) + f + 1; uint64_t w = absl::gbswap_64((u + v) * mul) + h; uint64_t x = Rotate(e + f, 42) + c; uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul; uint64_t z = e + f + c; a = absl::gbswap_64((x + z) * mul + y) + b; b = ShiftMix((z + a) * mul + d + h) * mul; return b + x; } uint64_t CityHash64(const char *s, size_t len) { if (len <= 32) { if (len <= 16) { return HashLen0to16(s, len); } else { return HashLen17to32(s, len); } } else if (len <= 64) { return HashLen33to64(s, len); } // For strings over 64 bytes we hash the end first, and then as we // loop we keep 56 bytes of state: v, w, x, y, and z. uint64_t x = Fetch64(s + len - 40); uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56); uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); std::pair v = WeakHashLen32WithSeeds(s + len - 64, len, z); std::pair w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); x = x * k1 + Fetch64(s); // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. len = (len - 1) & ~static_cast(63); do { x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; len -= 64; } while (len != 0); return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, HashLen16(v.second, w.second) + x); } uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) { return CityHash64WithSeeds(s, len, k2, seed); } uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0, uint64_t seed1) { return HashLen16(CityHash64(s, len) - seed0, seed1); } } // namespace hash_internal ABSL_NAMESPACE_END } // namespace absl